Definition 85.19.1. Let $S$ be a scheme. A morphism of formal algebraic spaces over $S$ is called a *monomorphism* if it is an injective map of sheaves.

## 85.19 Monomorphisms

Here is the definition.

An example is the following. Let $X$ be an algebraic space and let $T \subset |X|$ be a closed subset. Then the morphism $X_{/T} \to X$ from the formal completion of $X$ along $T$ to $X$ is a monomorphism. In particular, monomorphisms of formal algebraic spaces are in general not representable.

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)