## 84.19 Cohomological descent for hypercoverings of an object

In this section we assume $\mathcal{C}$ has fibre products and $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. We let $K$ be a hypercovering of $X$ as defined in Hypercoverings, Definition 25.3.3. We will study the augmentation

\[ a : \mathop{\mathit{Sh}}\nolimits ((\mathcal{C}/K)_{total}) \longrightarrow \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/X) \]

of Remark 84.16.4. Observe that $\mathcal{C}/X$ is a site which has equalizers and fibre products and that $K$ is a hypercovering for the site $\mathcal{C}/X$^{1} by Hypercoverings, Lemma 25.3.9. This means that every single result proved for hypercoverings in Section 84.17 has an immediate analogue in the situation in this section.

Lemma 84.19.1. Let $\mathcal{C}$ be a site with fibre products and $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. Let $K$ be a hypercovering of $X$. Then

$a^{-1} : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/X) \to \mathop{\mathit{Sh}}\nolimits ((\mathcal{C}/K)_{total})$ is fully faithful with essential image the cartesian sheaves of sets,

$a^{-1} : \textit{Ab}(\mathcal{C}/X) \to \textit{Ab}((\mathcal{C}/K)_{total})$ is fully faithful with essential image the cartesian sheaves of abelian groups.

In both cases $a_*$ provides the quasi-inverse functor.

**Proof.**
Via Remarks 84.15.5 and 84.16.4 and the discussion in the introduction to this section this follows from Lemma 84.17.1.
$\square$

Lemma 84.19.2. Let $\mathcal{C}$ be a site with fibre product and $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. Let $K$ be a hypercovering of $X$. For $E \in D(\mathcal{C}/X)$ the map

\[ E \longrightarrow Ra_*a^{-1}E \]

is an isomorphism.

**Proof.**
Via Remarks 84.15.5 and 84.16.4 and the discussion in the introduction to this section this follows from Lemma 84.17.3.
$\square$

Lemma 84.19.3. Let $\mathcal{C}$ be a site with fibre products and $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. Let $K$ be a hypercovering of $X$. Then we have a canonical isomorphism

\[ R\Gamma (X, E) = R\Gamma ((\mathcal{C}/K)_{total}, a^{-1}E) \]

for $E \in D(\mathcal{C}/X)$.

**Proof.**
Via Remarks 84.15.5 and 84.16.4 this follows from Lemma 84.17.4.
$\square$

Lemma 84.19.4. Let $\mathcal{C}$ be a site with fibre products and $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. Let $K$ be a hypercovering of $X$. Let $\mathcal{A} \subset \textit{Ab}((\mathcal{C}/K)_{total})$ denote the weak Serre subcategory of cartesian abelian sheaves. Then the functor $a^{-1}$ defines an equivalence

\[ D^+(\mathcal{C}/X) \longrightarrow D_\mathcal {A}^+((\mathcal{C}/K)_{total}) \]

with quasi-inverse $Ra_*$.

**Proof.**
Via Remarks 84.15.5 and 84.16.4 this follows from Lemma 84.17.5.
$\square$

## Comments (0)