Processing math: 100%

The Stacks project

Lemma 85.17.3. Let \mathcal{C} be a site with equalizers and fibre products. Let K be a hypercovering. For E \in D(\mathcal{C}) the map

E \longrightarrow Ra_*a^{-1}E

is an isomorphism.

Proof. First, let \mathcal{I} be an injective abelian sheaf on \mathcal{C}. Then the spectral sequence of Lemma 85.9.3 for the sheaf a^{-1}\mathcal{I} degenerates as (a^{-1}\mathcal{I})_ p = a_ p^{-1}\mathcal{I} is injective by Lemma 85.15.4. Thus the complex

a_{0, *}a_0^{-1}\mathcal{I} \to a_{1, *}a_1^{-1}\mathcal{I} \to a_{2, *}a_2^{-1}\mathcal{I} \to \ldots

computes Ra_*a^{-1}\mathcal{I}. By Lemma 85.17.2 this is equal to the complex \mathop{\mathcal{H}\! \mathit{om}}\nolimits (s(\mathbf{Z}_{F(K)}^\# ), \mathcal{I}). Because K is a hypercovering, we see that s(\mathbf{Z}_{F(K)}^\# ) is exact in degrees > 0 by Hypercoverings, Lemma 25.4.4 applied to the simplicial presheaf F(K). Since \mathcal{I} is injective, the functor \mathop{\mathcal{H}\! \mathit{om}}\nolimits (-, \mathcal{I}) is exact and we conclude that \mathop{\mathcal{H}\! \mathit{om}}\nolimits (s(\mathbf{Z}_{F(K)}^\# ), \mathcal{I}) is exact in positive degrees. We conclude that R^ pa_*a^{-1}\mathcal{I} = 0 for p > 0. On the other hand, we have \mathcal{I} = a_*a^{-1}\mathcal{I} by Lemma 85.17.1.

Bounded case. Let E \in D^+(\mathcal{C}). Choose a bounded below complex \mathcal{I}^\bullet of injectives representing E. By the result of the first paragraph and Leray's acyclicity lemma (Derived Categories, Lemma 13.16.7) Ra_*a^{-1}\mathcal{I}^\bullet is computed by the complex a_*a^{-1}\mathcal{I}^\bullet = \mathcal{I}^\bullet and we conclude the lemma is true in this case.

Unbounded case. We urge the reader to skip this, since the argument is the same as above, except that we use explicit representation by double complexes to get around convergence issues. Let E \in D(\mathcal{C}). To show the map E \to Ra_*a^{-1}E is an isomorphism, it suffices to show for every object U of \mathcal{C} that

R\Gamma (U, E) = R\Gamma (U, Ra_*a^{-1}E)

We will compute both sides and show the map E \to Ra_*a^{-1}E induces an isomorphism. Choose a K-injective complex \mathcal{I}^\bullet representing E. Choose a quasi-isomorphism a^{-1}\mathcal{I}^\bullet \to \mathcal{J}^\bullet for some K-injective complex \mathcal{J}^\bullet on (\mathcal{C}/K)_{total}. We have

R\Gamma (U, E) = R\mathop{\mathrm{Hom}}\nolimits (\mathbf{Z}_ U^\# , E)

and

R\Gamma (U, Ra_*a^{-1}E) = R\mathop{\mathrm{Hom}}\nolimits (\mathbf{Z}_ U^\# , Ra_*a^{-1}E) = R\mathop{\mathrm{Hom}}\nolimits (a^{-1}\mathbf{Z}_ U^\# , a^{-1}E)

By Lemma 85.9.1 we have a quasi-isomorphism

\Big(\ldots \to g_{2!}(a_2^{-1}\mathbf{Z}_ U^\# ) \to g_{1!}(a_1^{-1}\mathbf{Z}_ U^\# ) \to g_{0!}(a_0^{-1}\mathbf{Z}_ U^\# )\Big) \longrightarrow a^{-1}\mathbf{Z}_ U^\#

Hence R\mathop{\mathrm{Hom}}\nolimits (a^{-1}\mathbf{Z}_ U^\# , a^{-1}E) is equal to

R\Gamma ((\mathcal{C}/K)_{total}, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits ( \ldots \to g_{2!}(a_2^{-1}\mathbf{Z}_ U^\# ) \to g_{1!}(a_1^{-1}\mathbf{Z}_ U^\# ) \to g_{0!}(a_0^{-1}\mathbf{Z}_ U^\# ), \mathcal{J}^\bullet ))

By the construction in Cohomology on Sites, Section 21.35 and since \mathcal{J}^\bullet is K-injective, we see that this is represented by the complex of abelian groups with terms

\prod \nolimits _{p + q = n} \mathop{\mathrm{Hom}}\nolimits (g_{p!}(a_ p^{-1}\mathbf{Z}_ U^\# ), \mathcal{J}^ q) = \prod \nolimits _{p + q = n} \mathop{\mathrm{Hom}}\nolimits (a_ p^{-1}\mathbf{Z}_ U^\# , g_ p^{-1}\mathcal{J}^ q)

See Cohomology on Sites, Lemmas 21.34.6 and 21.35.1 for more information. Thus we find that R\Gamma (U, Ra_*a^{-1}E) is computed by the product total complex \text{Tot}_\pi (B^{\bullet , \bullet }) with B^{p, q} = \mathop{\mathrm{Hom}}\nolimits (a_ p^{-1}\mathbf{Z}_ U^\# , g_ p^{-1}\mathcal{J}^ q). For the other side we argue similarly. First we note that

s(\mathbf{Z}_{F(K)}^\# ) \longrightarrow \mathbf{Z}

is a quasi-isomorphism of complexes on \mathcal{C} by Hypercoverings, Lemma 25.4.4. Since \mathbf{Z}_ U^\# is a flat sheaf of \mathbf{Z}-modules we see that

s(\mathbf{Z}_{F(K)}^\# ) \otimes _\mathbf {Z} \mathbf{Z}_ U^\# \longrightarrow \mathbf{Z}_ U^\#

is a quasi-isomorphism. Therefore R\mathop{\mathrm{Hom}}\nolimits (\mathbf{Z}_ U^\# , E) is equal to

R\Gamma (\mathcal{C}, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits ( s(\mathbf{Z}_{F(K)}^\# ) \otimes _\mathbf {Z} \mathbf{Z}_ U^\# , \mathcal{I}^\bullet ))

By the construction of R\mathop{\mathcal{H}\! \mathit{om}}\nolimits and since \mathcal{I}^\bullet is K-injective, this is represented by the complex of abelian groups with terms

\prod \nolimits _{p + q = n} \mathop{\mathrm{Hom}}\nolimits (\mathbf{Z}^\# _{K_ p} \otimes _\mathbf {Z} \mathbf{Z}_ U^\# , \mathcal{I}^ q) = \prod \nolimits _{p + q = n} \mathop{\mathrm{Hom}}\nolimits (a_ p^{-1}\mathbf{Z}_ U^\# , a_ p^{-1}\mathcal{I}^ q)

The equality of terms follows from the fact that \mathbf{Z}^\# _{K_ p} \otimes _\mathbf {Z} \mathbf{Z}_ U^\# = a_{p!}a_ p^{-1}\mathbf{Z}_ U^\# by Modules on Sites, Remark 18.27.10. Thus we find that R\Gamma (U, E) is computed by the product total complex \text{Tot}_\pi (A^{\bullet , \bullet }) with A^{p, q} = \mathop{\mathrm{Hom}}\nolimits (a_ p^{-1}\mathbf{Z}_ U^\# , a_ p^{-1}\mathcal{I}^ q).

Since \mathcal{I}^\bullet is K-injective we see that a_ p^{-1}\mathcal{I}^\bullet is K-injective, see Lemma 85.15.4. Since \mathcal{J}^\bullet is K-injective we see that g_ p^{-1}\mathcal{J}^\bullet is K-injective, see Lemma 85.3.6. Both represent the object a_ p^{-1}E. Hence for every p \geq 0 the map of complexes

A^{p, \bullet } = \mathop{\mathrm{Hom}}\nolimits (a_ p^{-1}\mathbf{Z}_ U^\# , a_ p^{-1}\mathcal{I}^\bullet ) \longrightarrow \mathop{\mathrm{Hom}}\nolimits (a_ p^{-1}\mathbf{Z}_ U^\# , g_ p^{-1}\mathcal{J}^\bullet ) = B^{p, \bullet }

induced by g_ p^{-1} applied to the given map a^{-1}\mathcal{I}^\bullet \to \mathcal{J}^\bullet is a quasi-isomorphisms as these complexes both compute

R\mathop{\mathrm{Hom}}\nolimits (a_ p^{-1}\mathbf{Z}_ U^\# , a_ p^{-1}E)

By More on Algebra, Lemma 15.103.2 we conclude that the right vertical arrow in the commutative diagram

\xymatrix{ R\Gamma (U, E) \ar[r] \ar[d] & \text{Tot}_\pi (A^{\bullet , \bullet }) \ar[d] \\ R\Gamma (U, Ra_*a^{-1}E) \ar[r] & \text{Tot}_\pi (B^{\bullet , \bullet }) }

is a quasi-isomorphism. Since we saw above that the horizontal arrows are quasi-isomorphisms, so is the left vertical arrow. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.