Lemma 21.33.6. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{I}^\bullet $ be a K-injective complex of $\mathcal{O}$-modules. Let $\mathcal{L}^\bullet $ be a complex of $\mathcal{O}$-modules. Then

\[ H^0(\Gamma (U, \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{I}^\bullet ))) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ U)}(L|_ U, M|_ U) \]

for all $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. Similarly, $H^0(\Gamma (\mathcal{C}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{I}^\bullet ))) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ U)}(L, M)$.

**Proof.**
We have

\begin{align*} H^0(\Gamma (U, \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{I}^\bullet ))) & = \mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{O}_ U)}(L|_ U, M|_ U) \\ & = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ U)}(L|_ U, M|_ U) \end{align*}

The first equality is (21.33.0.1). The second equality is true because $\mathcal{I}^\bullet |_ U$ is K-injective by Lemma 21.21.1. The proof of the last equation is similar except that it uses (21.33.0.2).
$\square$

## Comments (0)