Lemma 21.34.5. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Given complexes $\mathcal{K}^\bullet , \mathcal{L}^\bullet , \mathcal{M}^\bullet $ of $\mathcal{O}$-modules there is a canonical morphism
\[ \text{Tot}(\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{M}^\bullet ) \otimes _\mathcal {O} \mathcal{K}^\bullet ) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{L}^\bullet ), \mathcal{M}^\bullet ) \]
of complexes of $\mathcal{O}$-modules functorial in all three complexes.
Comments (0)
There are also: