Lemma 85.9.1. In Situation 85.3.3 let $a_0$ be an augmentation towards a site $\mathcal{D}$ as in Remark 85.4.1. For any abelian sheaf $\mathcal{G}$ on $\mathcal{D}$ there is an exact complex
of abelian sheaves on $\mathcal{C}_{total}$.
Lemma 85.9.1. In Situation 85.3.3 let $a_0$ be an augmentation towards a site $\mathcal{D}$ as in Remark 85.4.1. For any abelian sheaf $\mathcal{G}$ on $\mathcal{D}$ there is an exact complex
of abelian sheaves on $\mathcal{C}_{total}$.
Proof. We encourage the reader to read the proof of Lemma 85.8.1 first. We will use Lemma 85.4.2 and the description of the functors $g_{n!}$ in Lemma 85.3.5 without further mention. In particular $g_{n!}(a_ n^{-1}\mathcal{G})$ is the sheaf on $\mathcal{C}_{total}$ whose restriction to $\mathcal{C}_ m$ is the sheaf
As maps of the complex we take $\sum (-1)^ i d^ n_ i$ where $d^ n_ i : g_{n!}(a_ n^{-1}\mathcal{G}) \to g_{n - 1!}(a_{n - 1}^{-1}\mathcal{G})$ is the adjoint to the map $a_ n^{-1}\mathcal{G} \to \bigoplus _{[n - 1] \to [n]} a_ n^{-1}\mathcal{G} = g_ n^{-1}g_{n - 1!}(a_{n - 1}^{-1}\mathcal{G})$ corresponding to the factor labeled with $\delta ^ n_ i : [n - 1] \to [n]$. The map $g_{0!}(a_0^{-1}\mathcal{G}) \to a^{-1}\mathcal{G}$ is adjoint to the identity map of $a_0^{-1}\mathcal{G}$. Then $g_ m^{-1}$ applied to the chain complex in degrees $\ldots , 2, 1, 0$ gives the complex
on $\mathcal{C}_ m$. This is equal to $a_ m^{-1}\mathcal{G}$ tensored over the constant sheaf $\mathbf{Z}$ with the complex
discussed in the proof of Lemma 85.8.1. There we have seen that this complex is homotopy equivalent to $\mathbf{Z}$ placed in degree $0$ which finishes the proof. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)