The Stacks project

Lemma 85.9.1. In Situation 85.3.3 let $a_0$ be an augmentation towards a site $\mathcal{D}$ as in Remark 85.4.1. For any abelian sheaf $\mathcal{G}$ on $\mathcal{D}$ there is an exact complex

\[ \ldots \to g_{2!}(a_2^{-1}\mathcal{G}) \to g_{1!}(a_1^{-1}\mathcal{G}) \to g_{0!}(a_0^{-1}\mathcal{G}) \to a^{-1}\mathcal{G} \to 0 \]

of abelian sheaves on $\mathcal{C}_{total}$.

Proof. We encourage the reader to read the proof of Lemma 85.8.1 first. We will use Lemma 85.4.2 and the description of the functors $g_{n!}$ in Lemma 85.3.5 without further mention. In particular $g_{n!}(a_ n^{-1}\mathcal{G})$ is the sheaf on $\mathcal{C}_{total}$ whose restriction to $\mathcal{C}_ m$ is the sheaf

\[ \bigoplus \nolimits _{\varphi : [n] \to [m]} f_\varphi ^{-1}a_ n^{-1}\mathcal{G} = \bigoplus \nolimits _{\varphi : [n] \to [m]} a_ m^{-1}\mathcal{G} \]

As maps of the complex we take $\sum (-1)^ i d^ n_ i$ where $d^ n_ i : g_{n!}(a_ n^{-1}\mathcal{G}) \to g_{n - 1!}(a_{n - 1}^{-1}\mathcal{G})$ is the adjoint to the map $a_ n^{-1}\mathcal{G} \to \bigoplus _{[n - 1] \to [n]} a_ n^{-1}\mathcal{G} = g_ n^{-1}g_{n - 1!}(a_{n - 1}^{-1}\mathcal{G})$ corresponding to the factor labeled with $\delta ^ n_ i : [n - 1] \to [n]$. The map $g_{0!}(a_0^{-1}\mathcal{G}) \to a^{-1}\mathcal{G}$ is adjoint to the identity map of $a_0^{-1}\mathcal{G}$. Then $g_ m^{-1}$ applied to the chain complex in degrees $\ldots , 2, 1, 0$ gives the complex

\[ \ldots \to \bigoplus \nolimits _{\alpha \in \mathop{\mathrm{Mor}}\nolimits _\Delta ([2], [m])]} a_ m^{-1}\mathcal{G} \to \bigoplus \nolimits _{\alpha \in \mathop{\mathrm{Mor}}\nolimits _\Delta ([1], [m])]} a_ m^{-1}\mathcal{G} \to \bigoplus \nolimits _{\alpha \in \mathop{\mathrm{Mor}}\nolimits _\Delta ([0], [m])]} a_ m^{-1}\mathcal{G} \]

on $\mathcal{C}_ m$. This is equal to $a_ m^{-1}\mathcal{G}$ tensored over the constant sheaf $\mathbf{Z}$ with the complex

\[ \ldots \to \bigoplus \nolimits _{\alpha \in \mathop{\mathrm{Mor}}\nolimits _\Delta ([2], [m])]} \mathbf{Z} \to \bigoplus \nolimits _{\alpha \in \mathop{\mathrm{Mor}}\nolimits _\Delta ([1], [m])]} \mathbf{Z} \to \bigoplus \nolimits _{\alpha \in \mathop{\mathrm{Mor}}\nolimits _\Delta ([0], [m])]} \mathbf{Z} \]

discussed in the proof of Lemma 85.8.1. There we have seen that this complex is homotopy equivalent to $\mathbf{Z}$ placed in degree $0$ which finishes the proof. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0D78. Beware of the difference between the letter 'O' and the digit '0'.