Proof.
Case A. Let u_ n : \mathcal{D} \to \mathcal{C}_ n be the common value of the functors u_\varphi \circ u_0 for \varphi : [0] \to [n]. Then u_ n corresponds to a morphism of sites a_ n : \mathcal{C}_ n \to \mathcal{D}, see Sites, Lemma 7.14.4. The same lemma shows that for all \varphi : [m] \to [n] we have a_ m \circ f_\varphi = a_ n.
Case B. Let u_ n : \mathcal{C}_ n \to \mathcal{D} be the common value of the functors u_0 \circ u_\varphi for \varphi : [0] \to [n]. Then u_ n is cocontinuous and hence defines a morphism of topoi a_ n : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}_ n) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{D)}, see Sites, Lemma 7.21.2. The same lemma shows that for all \varphi : [m] \to [n] we have a_ m \circ f_\varphi = a_ n.
Consider the functor a^{-1} : \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}_{total}) which to a sheaf of sets \mathcal{G} associates the sheaf \mathcal{F} = a^{-1}\mathcal{G} whose components are a_ n^{-1}\mathcal{G} and whose transition maps \mathcal{F}(\varphi ) are the identifications
f_\varphi ^{-1}\mathcal{F}_ m = f_\varphi ^{-1} a_ m^{-1}\mathcal{G} = a_ n^{-1}\mathcal{G} = \mathcal{F}_ n
for \varphi : [m] \to [n], see the description of \mathop{\mathit{Sh}}\nolimits (\mathcal{C}_{total}) in Lemma 85.3.4. Since the functors a_ n^{-1} are exact, a^{-1} is an exact functor. Finally, for a_* : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}_{total}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) we take the functor which to a sheaf \mathcal{F} on \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) associates
\xymatrix{ a_*\mathcal{F} \ar@{=}[r] & \text{Equalizer}(a_{0, *}\mathcal{F}_0 \ar@<1ex>[r] \ar@<-1ex>[r] & a_{1, *}\mathcal{F}_1) }
Here the two maps come from the two maps \varphi : [0] \to [1] via
a_{0, *}\mathcal{F}_0 \to a_{0, *}f_{\varphi , *} f_\varphi ^{-1}\mathcal{F}_0 \xrightarrow {\mathcal{F}(\varphi )} a_{0, *}f_{\varphi , *} \mathcal{F}_1 = a_{1, *}\mathcal{F}_1
where the first arrow comes from 1 \to f_{\varphi , *} f_\varphi ^{-1}. Let \mathcal{G}_\bullet denote the constant coosimplicial sheaf with value \mathcal{G} and let a_{\bullet , *}\mathcal{F} denote the cosimplicial sheaf having a_{n, *}\mathcal{F}_ n in degree n. By the usual adjuntion for the morphisms of topoi a_ n we see that a map a^{-1}\mathcal{G} \to \mathcal{F} is the same thing as a map
\mathcal{G}_\bullet \longrightarrow a_{\bullet , *}\mathcal{F}
of cosimplicial sheaves. By the dual to Simplicial, Lemma 14.20.2 this is the same thing as a map \mathcal{G} \to a_*\mathcal{F}. Thus a^{-1} and a_* are adjoint functors and we obtain our morphism of topoi a1. The equalities a \circ g_ n = f_ n follow immediately from the definitions.
\square
Comments (4)
Comment #6284 by Rachel Webb on
Comment #6402 by Johan on
Comment #8761 by ZL on
Comment #9319 by Stacks project on