Lemma 84.8.1. In Situation 84.3.3 and with notation as above there is a complex

of abelian sheaves on $\mathcal{C}_{total}$ which forms a resolution of the constant sheaf with value $\mathbf{Z}$ on $\mathcal{C}_{total}$.

Lemma 84.8.1. In Situation 84.3.3 and with notation as above there is a complex

\[ \ldots \to g_{2!}\mathbf{Z} \to g_{1!}\mathbf{Z} \to g_{0!}\mathbf{Z} \]

of abelian sheaves on $\mathcal{C}_{total}$ which forms a resolution of the constant sheaf with value $\mathbf{Z}$ on $\mathcal{C}_{total}$.

**Proof.**
We will use the description of the functors $g_{n!}$ in Lemma 84.3.5 without further mention. As maps of the complex we take $\sum (-1)^ i d^ n_ i$ where $d^ n_ i : g_{n!}\mathbf{Z} \to g_{n - 1!}\mathbf{Z}$ is the adjoint to the map $\mathbf{Z} \to \bigoplus _{[n - 1] \to [n]} \mathbf{Z} = g_ n^{-1}g_{n - 1!}\mathbf{Z}$ corresponding to the factor labeled with $\delta ^ n_ i : [n - 1] \to [n]$. Then $g_ m^{-1}$ applied to the complex gives the complex

\[ \ldots \to \bigoplus \nolimits _{\alpha \in \mathop{\mathrm{Mor}}\nolimits _\Delta ([2], [m])]} \mathbf{Z} \to \bigoplus \nolimits _{\alpha \in \mathop{\mathrm{Mor}}\nolimits _\Delta ([1], [m])]} \mathbf{Z} \to \bigoplus \nolimits _{\alpha \in \mathop{\mathrm{Mor}}\nolimits _\Delta ([0], [m])]} \mathbf{Z} \]

on $\mathcal{C}_ m$. In other words, this is the complex associated to the free abelian sheaf on the simplicial set $\Delta [m]$, see Simplicial, Example 14.11.2. Since $\Delta [m]$ is homotopy equivalent to $\Delta [0]$, see Simplicial, Example 14.26.7, and since “taking free abelian sheaf on” is a functor, we see that the complex above is homotopy equivalent to the free abelian sheaf on $\Delta [0]$ (Simplicial, Remark 14.26.4 and Lemma 14.27.2). This complex is acyclic in positive degrees and equal to $\mathbf{Z}$ in degree $0$. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)