Lemma 84.8.2. In Situation 84.3.3. Let $\mathcal{F}$ be an abelian sheaf on $\mathcal{C}_{total}$ there is a canonical complex

which is exact in degrees $-1, 0$ and exact everywhere if $\mathcal{F}$ is injective.

Lemma 84.8.2. In Situation 84.3.3. Let $\mathcal{F}$ be an abelian sheaf on $\mathcal{C}_{total}$ there is a canonical complex

\[ 0 \to \Gamma (\mathcal{C}_{total}, \mathcal{F}) \to \Gamma (\mathcal{C}_0, \mathcal{F}_0) \to \Gamma (\mathcal{C}_1, \mathcal{F}_1) \to \Gamma (\mathcal{C}_2, \mathcal{F}_2) \to \ldots \]

which is exact in degrees $-1, 0$ and exact everywhere if $\mathcal{F}$ is injective.

**Proof.**
Observe that $\mathop{\mathrm{Hom}}\nolimits (\mathbf{Z}, \mathcal{F}) = \Gamma (\mathcal{C}_{total}, \mathcal{F})$ and $\mathop{\mathrm{Hom}}\nolimits (g_{n!}\mathbf{Z}, \mathcal{F}) = \Gamma (\mathcal{C}_ n, \mathcal{F}_ n)$. Hence this lemma is an immediate consequence of Lemma 84.8.1 and the fact that $\mathop{\mathrm{Hom}}\nolimits (-, \mathcal{F})$ is exact if $\mathcal{F}$ is injective.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)