Lemma 84.8.3. In Situation 84.3.3. For $K$ in $D^+(\mathcal{C}_{total})$ there is a spectral sequence $(E_ r, d_ r)_{r \geq 0}$ with

converging to $H^{p + q}(\mathcal{C}_{total}, K)$. This spectral sequence is functorial in $K$.

Lemma 84.8.3. In Situation 84.3.3. For $K$ in $D^+(\mathcal{C}_{total})$ there is a spectral sequence $(E_ r, d_ r)_{r \geq 0}$ with

\[ E_1^{p, q} = H^ q(\mathcal{C}_ p, K_ p),\quad d_1^{p, q} : E_1^{p, q} \to E_1^{p + 1, q} \]

converging to $H^{p + q}(\mathcal{C}_{total}, K)$. This spectral sequence is functorial in $K$.

**Proof.**
Let $\mathcal{I}^\bullet $ be a bounded below complex of injectives representing $K$. Consider the double complex with terms

\[ A^{p, q} = \Gamma (\mathcal{C}_ p, \mathcal{I}^ q_ p) \]

where the horizontal arrows come from Lemma 84.8.2 and the vertical arrows from the differentials of the complex $\mathcal{I}^\bullet $. The rows of the double complex are exact in positive degrees and evaluate to $\Gamma (\mathcal{C}_{total}, \mathcal{I}^ q)$ in degree $0$. On the other hand, since restriction to $\mathcal{C}_ p$ is exact (Lemma 84.3.5) the complex $\mathcal{I}_ p^\bullet $ represents $K_ p$ in $D(\mathcal{C}_ p)$. The sheaves $\mathcal{I}_ p^ q$ are injective abelian sheaves on $\mathcal{C}_ p$ (Lemma 84.3.6). Hence the cohomology of the columns computes the groups $H^ q(\mathcal{C}_ p, K_ p)$. We conclude by applying Homology, Lemmas 12.25.3 and 12.25.4. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)