Lemma 21.35.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $K, L$ be objects of $D(\mathcal{O})$. For every object $U$ of $\mathcal{C}$ we have

$H^0(U, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ U)}(L|_ U, M|_ U)$

and we have $H^0(\mathcal{C}, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O})}(L, M)$.

Proof. Choose a K-injective complex $\mathcal{I}^\bullet$ of $\mathcal{O}$-modules representing $M$ and a K-flat complex $\mathcal{L}^\bullet$ representing $L$. Then $\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{I}^\bullet )$ is K-injective by Lemma 21.34.8. Hence we can compute cohomology over $U$ by simply taking sections over $U$ and the result follows from Lemma 21.34.6. $\square$

Comment #9534 by nkym on

The first $K,L$ should be $L,M$.

There are also:

• 5 comment(s) on Section 21.35: Internal hom in the derived category

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08JA. Beware of the difference between the letter 'O' and the digit '0'.