The Stacks project

Remark 85.16.4 (Variant for over an object). Let $\mathcal{C}$ be a site. Let $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. Recall that we have a category $\text{SR}(\mathcal{C}, X) = \text{SR}(\mathcal{C}/X)$ of semi-representable objects over $X$, see Remark 85.15.5. We may apply the above discussion to the site $\mathcal{C}/X$. Briefly, the constructions above give

  1. a site $(\mathcal{C}/K)_{total}$ for a simplicial $K$ object of $\text{SR}(\mathcal{C}, X)$,

  2. a localization functor $j_{total} : (\mathcal{C}/K)_{total} \to \mathcal{C}/X$,

  3. localization functors $j_ n : \mathcal{C}/K_ n \to \mathcal{C}/X$,

  4. a morphism of topoi $a : \mathop{\mathit{Sh}}\nolimits ((\mathcal{C}/K)_{total}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/X)$,

  5. morphisms of topoi $a_ n : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/K_ n) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/X)$,

  6. a functor $a^{Sh}_! : \mathop{\mathit{Sh}}\nolimits ((\mathcal{C}/K)_{total}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/X)$ left adjoint to $a^{-1}$, and

  7. a functor $a_! : \textit{Ab}((\mathcal{C}/K)_{total}) \to \textit{Ab}(\mathcal{C}/X)$ left adjoint to $a^{-1}$.

All of the results of this section hold in this setting. To prove this one replaces the site $\mathcal{C}$ everywhere by $\mathcal{C}/X$.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0D8C. Beware of the difference between the letter 'O' and the digit '0'.