The Stacks project

Remark 84.16.5 (Ringed variant). Let $\mathcal{C}$ be a site. Let $\mathcal{O}_\mathcal {C}$ be a sheaf of rings. Given a simplicial semi-representable object $K$ of $\mathcal{C}$ we set $\mathcal{O} = a^{-1}\mathcal{O}_\mathcal {C}$, where $a$ is as in Lemmas 84.16.1 and 84.16.2. The constructions above, keeping track of the sheaves of rings as in Remark 84.15.6, give

  1. a ringed site $((\mathcal{C}/K)_{total}, \mathcal{O})$ for a simplicial $K$ object of $\text{SR}(\mathcal{C})$,

  2. a morphism of ringed topoi $a : (\mathop{\mathit{Sh}}\nolimits ((\mathcal{C}/K)_{total}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C})$,

  3. morphisms of ringed topoi $a_ n : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/K_ n), \mathcal{O}_ n) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C})$,

  4. a functor $a_! : \textit{Mod}(\mathcal{O}) \to \textit{Mod}(\mathcal{O}_\mathcal {C})$ left adjoint to $a^*$.

The functor $a_!$ exists (but in general is not exact) because $a^{-1}\mathcal{O}_\mathcal {C} = \mathcal{O}$ and we can replace the use of Modules on Sites, Lemma 18.16.2 in the proof of Lemma 84.16.2 by Modules on Sites, Lemma 18.41.1. As discussed in Remark 84.15.6 there are exact functors $a_{n!} : \textit{Mod}(\mathcal{O}_ n) \to \textit{Mod}(\mathcal{O}_\mathcal {C})$ left adjoint to $a_ n^*$. Consequently, the morphisms $a$ and $a_ n$ are flat. Remark 84.15.6 implies the morphism of ringed topoi $f_\varphi : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/K_ n), \mathcal{O}_ n) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/K_ m), \mathcal{O}_ m)$ for $\varphi : [m] \to [n]$ is flat and there exists an exact functor $f_{\varphi !} : \textit{Mod}(\mathcal{O}_ n) \to \textit{Mod}(\mathcal{O}_ m)$ left adjoint to $f_\varphi ^*$. This in turn implies that for the flat morphism of ringed topoi $g_ n : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/K_ n), \mathcal{O}_ n) \to (\mathop{\mathit{Sh}}\nolimits ((\mathcal{C}/K)_{total}), \mathcal{O})$ the functor $g_{n!} : \textit{Mod}(\mathcal{O}_ n) \to \textit{Mod}(\mathcal{O})$ left adjoint to $g_ n^*$ is exact, see Lemma 84.6.3.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0D9W. Beware of the difference between the letter 'O' and the digit '0'.