The Stacks project

87.4 Topological rings and modules

This section is a continuation of More on Algebra, Section 15.36. Let $R$ be a topological ring and let $M$ be a linearly topologized $R$-module. When we say “let $M_\lambda $ be a fundamental system of open submodules” we will mean that each $M_\lambda $ is an open submodule and that any neighbourhood of $0$ contains one of the $M_\lambda $. In other words, this means that $M_\lambda $ is a fundamental system of neighbourhoods of $0$ in $M$ consisting of submodules. Similarly, if $R$ is a linearly topologized ring, then we say “let $I_\lambda $ be a fundamental system of open ideals” to mean that $I_\lambda $ is a fundamental system of neighbourhoods of $0$ in $R$ consisting of ideals.

Example 87.4.1. Let $R$ be a linearly topologized ring and let $M$ be a linearly topologized $R$-module. Let $I_\lambda $ be a fundamental system of open ideals in $R$ and let $M_\mu $ be a fundamental system of open submodules of $M$. The continuity of $+ : M \times M \to M$ is automatic and the continuity of $R \times M \to M$ signifies

\[ \forall f, x, \mu \ \exists \lambda , \nu ,\ (f + I_\lambda )(x + M_\nu ) \subset fx + M_\mu \]

Since $fM_\nu + I_\lambda M_\nu \subset M_\mu $ if $M_\nu \subset M_\mu $ we see that the condition is equivalent to

\[ \forall x, \mu \ \exists \lambda \ I_\lambda x \subset M_\mu \]

However, it need not be the case that given $\mu $ there is a $\lambda $ such that $I_\lambda M \subset M_\mu $. For example, consider $R = k[[t]]$ with the $t$-adic topology and $M = \bigoplus _{n \in \mathbf{N}} R$ with fundamental system of open submodules given by

\[ M_ m = \bigoplus \nolimits _{n \in \mathbf{N}} t^{nm}R \]

Since every $x \in M$ has finitely many nonzero coordinates we see that, given $m$ and $x$ there exists a $k$ such that $t^ k x \in M_ m$. Thus $M$ is a linearly topologized $R$-module, but it isn't true that given $m$ there is a $k$ such that $t^ kM \subset M_ m$. On the other hand, if $R \to S$ is a continuous map of linearly topologized rings, then the corresponding statement does hold, i.e., for every open ideal $J \subset S$ there exists an open ideal $I \subset R$ such that $IS \subset J$ (as the reader can easily deduce from continuity of the map $R \to S$).

Lemma 87.4.2. Let $R$ be a topological ring. Let $M$ be a linearly topologized $R$-module and let $M_\lambda $, $\lambda \in \Lambda $ be a fundamental system of open submodules. Let $N \subset M$ be a submodule. The closure of $N$ is $\bigcap _{\lambda \in \Lambda } (N + M_\lambda )$.

Proof. Since each $N + M_\lambda $ is open, it is also closed. Hence the intersection is closed. If $x \in M$ is not in the closure of $N$, then $(x + M_\lambda ) \cap N = 0$ for some $\lambda $. Hence $x \not\in N + M_\lambda $. This proves the lemma. $\square$

Unless otherwise mentioned we endow submodules and quotient modules with the induced topology. Let $M$ be a linearly topologized module over a topological ring $R$, and let $0 \to N \to M \to Q \to 0$ be a short exact sequence of $R$-modules. If $M_\lambda $ is a fundamental system of open submodules of $M$, then $N \cap M_\lambda $ is a fundamental system of open submodules of $N$. If $\pi : M \to Q$ is the quotient map, then $\pi (M_\lambda )$ is a fundamental system of open submodules of $Q$. In particular these induced topologies are linear topologies.

Lemma 87.4.3. Let $R$ be a topological ring. Let $M$ be a linearly topologized $R$-module. Let $N \subset M$ be a submodule. Then

  1. $0 \to N^\wedge \to M^\wedge \to (M/N)^\wedge $ is exact, and

  2. $N^\wedge $ is the closure of the image of $N \to M^\wedge $.

Proof. Let $M_\lambda $, $\lambda \in \Lambda $ be a fundamental system of open submodules. Then $N \cap M_\lambda $ is a fundamental system of open submodules of $N$ and $M_\lambda + N/N$ is a fundamental system of open submodules of $M/N$. Thus we see that (1) follows from the exactness of the sequences

\[ 0 \to N/N \cap M_\lambda \to M/M_\lambda \to M/(M_\lambda + N) \to 0 \]

and the fact that taking limits commutes with limits. The second statement follows from this and the fact that $N \to N^\wedge $ has dense image and that the kernel of $M^\wedge \to (M/N)^\wedge $ is closed. $\square$

Lemma 87.4.4. Let $R$ be a topological ring. Let $M$ be a complete, linearly topologized $R$-module. Let $N \subset M$ be a closed submodule. If $M$ has a countable fundamental system of neighbourhoods of $0$, then $M/N$ is complete and the map $M \to M/N$ is open.

Proof. Let $M_ n$, $n \in \mathbf{N}$ be a fundamental system of open submodules of $M$. We may assume $M_{n + 1} \subset M_ n$ for all $n$. The system $(M_ n + N)/N$ is a fundamental system in $M/N$. Hence we have to show that $M/N = \mathop{\mathrm{lim}}\nolimits M/(M_ n + N)$. Consider the short exact sequences

\[ 0 \to N/N \cap M_ n \to M/M_ n \to M/(M_ n + N) \to 0 \]

Since the transition maps of the system $\{ N/N\cap M_ n\} $ are surjective we see that $M = \mathop{\mathrm{lim}}\nolimits M/M_ n$ (by completeness of $M$) surjects onto $\mathop{\mathrm{lim}}\nolimits M/(M_ n + N)$ by Algebra, Lemma 10.86.4. As $N$ is closed we see that the kernel of $M \to \mathop{\mathrm{lim}}\nolimits M/(M_ n + N)$ is $N$ (see Lemma 87.4.2). Finally, $M \to M/N$ is open by definition of the quotient topology. $\square$

reference

Lemma 87.4.5. Let $R$ be a topological ring. Let $M$ be a linearly topologized $R$-module. Let $N \subset M$ be a submodule. Assume $M$ has a countable fundamental system of neighbourhoods of $0$. Then

  1. $0 \to N^\wedge \to M^\wedge \to (M/N)^\wedge \to 0$ is exact,

  2. $N^\wedge $ is the closure of the image of $N \to M^\wedge $,

  3. $M^\wedge \to (M/N)^\wedge $ is open.

Proof. We have $0 \to N^\wedge \to M^\wedge \to (M/N)^\wedge $ is exact and statement (2) by Lemma 87.4.3. This produces a canonical map $c : M^\wedge /N^\wedge \to (M/N)^\wedge $. The module $M^\wedge /N^\wedge $ is complete and $M^\wedge \to M^\wedge /N^\wedge $ is open by Lemma 87.4.4. By the universal property of completion we obtain a canonical map $b : (M/N)^\wedge \to M^\wedge /N^\wedge $. Then $b$ and $c$ are mutually inverse as they are on a dense subset. $\square$

Lemma 87.4.6. Let $R$ be a topological ring. Let $M$ be a topological $R$-module. Let $I \subset R$ be a finitely generated ideal. Assume $M$ has an open submodule whose topology is $I$-adic. Then $M^\wedge $ has an open submodule whose topology is $I$-adic and we have $M^\wedge /I^ n M^\wedge = M/I^ nM$ for all $n \geq 1$.

Proof. Let $M' \subset M$ be an open submodule whose topology is $I$-adic. Then $\{ I^ nM'\} _{n \geq 1}$ is a fundamental system of open submodules of $M$. Thus $M^\wedge = \mathop{\mathrm{lim}}\nolimits M/I^ nM'$ contains $(M')^\wedge = \mathop{\mathrm{lim}}\nolimits M'/I^ nM'$ as an open submodule and the topology on $(M')^\wedge $ is $I$-adic by Algebra, Lemma 10.96.3. Since $I$ is finitely generated, $I^ n$ is finitely generated, say by $f_1, \ldots , f_ r$. Observe that the surjection $(f_1, \ldots , f_ r) : M^{\oplus r} \to I^ n M$ is continuous and open by our description of the topology on $M$ above. By Lemma 87.4.5 applied to this surjection and to the short exact sequence $0 \to I^ nM \to M \to M/I^ nM \to 0$ we conclude that

\[ (f_1, \ldots , f_ r) : (M^\wedge )^{\oplus r} \longrightarrow M^\wedge \]

surjects onto the kernel of the surjection $M^\wedge \to M/I^ nM$. Since $f_1, \ldots , f_ r$ generate $I^ n$ we conclude. $\square$

Definition 87.4.7. Let $R$ be a topological ring. Let $M$ and $N$ be linearly topologized $R$-modules. The tensor product of $M$ and $N$ is the (usual) tensor product $M \otimes _ R N$ endowed with the linear topology defined by declaring

\[ \mathop{\mathrm{Im}}(M_\mu \otimes _ R N + M \otimes _ R N_\nu \longrightarrow M \otimes _ R N) \]

to be a fundamental system of open submodules, where $M_\mu \subset M$ and $N_\nu \subset N$ run through fundamental systems of open submodules in $M$ and $N$. The completed tensor product

\[ M \widehat{\otimes }_ R N = \mathop{\mathrm{lim}}\nolimits M \otimes _ R N/(M_\mu \otimes _ R N + M \otimes _ R N_\nu ) = \mathop{\mathrm{lim}}\nolimits M/M_\mu \otimes _ R N/N_\nu \]

is the completion of the tensor product.

Observe that the topology on $R$ is immaterial for the construction of the tensor product or the completed tensor product. If $R \to A$ and $R \to B$ are continuous maps of linearly topologized rings, then the construction above gives a tensor product $A \otimes _ R B$ and a completed tensor product $A \widehat{\otimes }_ R B$.

We record here the notions introduced in Remark 87.2.3.

Definition 87.4.8. Let $A$ be a linearly topologized ring.

  1. An element $f \in A$ is called topologically nilpotent if $f^ n \to 0$ as $n \to \infty $.

  2. A weak ideal of definition for $A$ is an open ideal $I \subset A$ consisting entirely of topologically nilpotent elements.

  3. We say $A$ is weakly pre-admissible if $A$ has a weak ideal of definition.

  4. We say $A$ is weakly admissible if $A$ is weakly pre-admissible and complete1.

Given a weak ideal of definition $I$ in a linearly topologized ring $A$ and an open ideal $J$ the intersection $I \cap J$ is a weak ideal of definition. Hence if there is one weak ideal of definition, then there is a fundamental system of open ideals consisting of weak ideals of definition. In particular, given a weakly admissible topological ring $A$ then $A = \mathop{\mathrm{lim}}\nolimits A/I_\lambda $ where $\{ I_\lambda \} $ is a fundamental system of weak ideals of definition.

Lemma 87.4.9. Let $A$ be a weakly admissible topological ring. Let $I \subset A$ be a weak ideal of definition. Then $(A, I)$ is a henselian pair.

Proof. Let $A \to A'$ be an étale ring map and let $\sigma : A' \to A/I$ be an $A$-algebra map. By More on Algebra, Lemma 15.11.6 it suffices to lift $\sigma $ to an $A$-algebra map $A' \to A$. To do this, as $A$ is complete, it suffices to find, for every open ideal $J \subset I$, a unique $A$-algebra map $A' \to A/J$ lifting $\sigma $. Since $I$ is a weak ideal of definition, the ideal $I/J$ is locally nilpotent. We conclude by More on Algebra, Lemma 15.11.2. $\square$

Lemma 87.4.10. Let $B$ be a linearly topologized ring. The set of topologically nilpotent elements of $B$ is a closed, radical ideal of $B$. Let $\varphi : A \to B$ be a continuous map of linearly topologized rings.

  1. If $f \in A$ is topologically nilpotent, then $\varphi (f)$ is topologically nilpotent.

  2. If $I \subset A$ consists of topologically nilpotent elements, then the closure of $\varphi (I)B$ consists of topologically nilpotent elements.

Proof. Let $\mathfrak b \subset B$ be the set of topologically nilpotent elements. We omit the proof of the fact that $\mathfrak b$ is a radical ideal (good exercise in the definitions). Let $g$ be an element of the closure of $\mathfrak b$. Our goal is to show that $g$ is topologically nilpotent. Let $J \subset B$ be an open ideal. We have to show $g^ e \in J$ for some $e \geq 1$. We have $g \in \mathfrak b + J$ by Lemma 87.4.2. Hence $g = f + h$ for some $f \in \mathfrak b$ and $h \in J$. Pick $m \geq 1$ such that $f^ m \in J$. Then $g^{m + 1} \in J$ as desired.

Let $\varphi : A \to B$ be as in the statement of the lemma. Assertion (1) is clear and assertion (2) follows from this and the fact that $\mathfrak b$ is a closed ideal. $\square$

Lemma 87.4.11. Let $A \to B$ be a continuous map of linearly topologized rings. Let $I \subset A$ be an ideal. The closure of $IB$ is the kernel of $B \to B \widehat{\otimes }_ A A/I$.

Proof. Let $J_\mu $ be a fundamental system of open ideals of $B$. The closure of $IB$ is $\bigcap (IB + J_\lambda )$ by Lemma 87.4.2. Let $I_\mu $ be a fundamental system of open ideals in $A$. Then

\[ B \widehat{\otimes }_ A A/I = \mathop{\mathrm{lim}}\nolimits (B/J_\lambda \otimes _ A A/(I_\mu + I)) = \mathop{\mathrm{lim}}\nolimits B/(J_\lambda + I_\mu B + I B) \]

Since $A \to B$ is continuous, for every $\lambda $ there is a $\mu $ such that $I_\mu B \subset J_\lambda $, see discussion in Example 87.4.1. Hence the limit can be written as $\mathop{\mathrm{lim}}\nolimits B/(J_\lambda + IB)$ and the result is clear. $\square$

Lemma 87.4.12. Let $B \to A$ and $B \to C$ be continuous homomorphisms of linearly topologized rings.

  1. If $A$ and $C$ are weakly pre-admissible, then $A \widehat{\otimes }_ B C$ is weakly admissible.

  2. If $A$ and $C$ are pre-admissible, then $A \widehat{\otimes }_ B C$ is admissible.

  3. If $A$ and $C$ have a countable fundamental system of open ideals, then $A \widehat{\otimes }_ B C$ has a countable fundamental system of open ideals.

  4. If $A$ and $C$ are pre-adic and have finitely generated ideals of definition, then $A \widehat{\otimes }_ B C$ is adic and has a finitely generated ideal of definition.

  5. If $A$ and $C$ are pre-adic Noetherian rings and $B/\mathfrak b \to A/\mathfrak a$ is of finite type where $\mathfrak a \subset A$ and $\mathfrak b \subset B$ are the ideals of topologically nilpotent elements, then $A \widehat{\otimes }_ B C$ is adic Noetherian.

Proof. Let $I_\lambda \subset A$, $\lambda \in \Lambda $ and $J_\mu \subset C$, $\mu \in M$ be fundamental systems of open ideals, then by definition

\[ A \widehat{\otimes }_ B C = \mathop{\mathrm{lim}}\nolimits _{\lambda , \mu } A/I_\lambda \otimes _ B C/J_\mu \]

with the limit topology. Thus a fundamental system of open ideals is given by the kernels $K_{\lambda , \mu }$ of the maps $A \widehat{\otimes }_ B C \to A/I_\lambda \otimes _ B C/J_\mu $. Note that $K_{\lambda , \mu }$ is the closure of the ideal $I_\lambda (A \widehat{\otimes }_ B C) + J_\mu (A \widehat{\otimes }_ B C)$. Finally, we have a ring homomorphism $\tau : A \otimes _ B C \to A \widehat{\otimes }_ B C$ with dense image.

Proof of (1). If $I_\lambda $ and $J_\mu $ consist of topologically nilpotent elements, then so does $K_{\lambda , \mu }$ by Lemma 87.4.10. Hence $A \widehat{\otimes }_ B C$ is weakly admissible by definition.

Proof of (2). Assume for some $\lambda _0$ and $\mu _0$ the ideals $I = I_{\lambda _0} \subset A$ and $J_{\mu _0} \subset C$ are ideals of definition. Thus for every $\lambda $ there exists an $n$ such that $I^ n \subset I_\lambda $. For every $\mu $ there exists an $m$ such that $J^ m \subset J_\mu $. Then

\[ \left(I(A \widehat{\otimes }_ B C) + J(A \widehat{\otimes }_ B C)\right)^{n + m} \subset I_\lambda (A \widehat{\otimes }_ B C) + J_\mu (A \widehat{\otimes }_ B C) \]

It follows that the open ideal $K = K_{\lambda _0, \mu _0}$ satisfies $K^{n + m} \subset K_{\lambda , \mu }$. Hence $K$ is an ideal of definition of $A \widehat{\otimes }_ B C$ and $A \widehat{\otimes }_ B C$ is admissible by definition.

Proof of (3). If $\Lambda $ and $M$ are countable, so is $\Lambda \times M$.

Proof of (4). Assume $\Lambda = \mathbf{N}$ and $M = \mathbf{N}$ and we have finitely generated ideals $I \subset A$ and $J \subset C$ such that $I_ n = I^ n$ and $J_ n = J^ n$. Then

\[ I(A \widehat{\otimes }_ B C) + J(A \widehat{\otimes }_ B C) \]

is a finitely generated ideal and it is easily seen that $A \widehat{\otimes }_ B C$ is the completion of $A \otimes _ B C$ with respect to this ideal. Hence (4) follows from Algebra, Lemma 10.96.3.

Proof of (5). Let $\mathfrak c \subset C$ be the ideal of topologically nilpotent elements. Since $A$ and $C$ are adic Noetherian, we see that $\mathfrak a$ and $\mathfrak c$ are ideals of definition (details omitted). From part (4) we already know that $A \widehat{\otimes }_ B C$ is adic and that $\mathfrak a(A \widehat{\otimes }_ B C) + \mathfrak c(A \widehat{\otimes }_ B C)$ is a finitely generated ideal of definition. Since

\[ A \widehat{\otimes }_ B C / \left(\mathfrak a(A \widehat{\otimes }_ B C) + \mathfrak c(A \widehat{\otimes }_ B C)\right) = A/\mathfrak a \otimes _{B/\mathfrak b} C/\mathfrak c \]

is Noetherian as a finite type algebra over the Noetherian ring $C/\mathfrak c$ we conclude by Algebra, Lemma 10.97.5. $\square$

[1] By our conventions this includes separated.

Comments (2)

Comment #5983 by Dario Weißmann on

right after lemma 0AMS: ...let ... is a short exact sequence


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AMQ. Beware of the difference between the letter 'O' and the digit '0'.