The Stacks project

Lemma 85.4.13. Let $A \to B$ be a continuous map of linearly topologized rings. Let $I \subset A$ be an ideal. The closure of $IB$ is the kernel of $B \to B \widehat{\otimes }_ A A/I$.

Proof. Let $J_\mu $ be a fundamental system of open ideals of $B$. The closure of $IB$ is $\bigcap (IB + J_\lambda )$ by Lemma 85.4.2. Let $I_\mu $ be a fundamental system of open ideals in $A$. Then

\[ B \widehat{\otimes }_ A A/I = \mathop{\mathrm{lim}}\nolimits (B/J_\lambda \otimes _ A A/(I_\mu + I)) = \mathop{\mathrm{lim}}\nolimits B/(J_\lambda + I_\mu B + I B) \]

Since $A \to B$ is continuous, for every $\lambda $ there is a $\mu $ such that $I_\mu B \subset J_\lambda $, see discussion in Example 85.4.1. Hence the limit can be written as $\mathop{\mathrm{lim}}\nolimits B/(J_\lambda + IB)$ and the result is clear. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AMZ. Beware of the difference between the letter 'O' and the digit '0'.