Lemma 87.4.2. Let $R$ be a topological ring. Let $M$ be a linearly topologized $R$-module and let $M_\lambda$, $\lambda \in \Lambda$ be a fundamental system of open submodules. Let $N \subset M$ be a submodule. The closure of $N$ is $\bigcap _{\lambda \in \Lambda } (N + M_\lambda )$.

Proof. Since each $N + M_\lambda$ is open, it is also closed. Hence the intersection is closed. If $x \in M$ is not in the closure of $N$, then $(x + M_\lambda ) \cap N = 0$ for some $\lambda$. Hence $x \not\in N + M_\lambda$. This proves the lemma. $\square$

## Comments (0)

There are also:

• 2 comment(s) on Section 87.4: Topological rings and modules

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AMS. Beware of the difference between the letter 'O' and the digit '0'.