The Stacks project

Lemma 87.4.4. Let $R$ be a topological ring. Let $M$ be a complete, linearly topologized $R$-module. Let $N \subset M$ be a closed submodule. If $M$ has a countable fundamental system of neighbourhoods of $0$, then $M/N$ is complete and the map $M \to M/N$ is open.

Proof. Let $M_ n$, $n \in \mathbf{N}$ be a fundamental system of open submodules of $M$. We may assume $M_{n + 1} \subset M_ n$ for all $n$. The system $(M_ n + N)/N$ is a fundamental system in $M/N$. Hence we have to show that $M/N = \mathop{\mathrm{lim}}\nolimits M/(M_ n + N)$. Consider the short exact sequences

\[ 0 \to N/N \cap M_ n \to M/M_ n \to M/(M_ n + N) \to 0 \]

Since the transition maps of the system $\{ N/N\cap M_ n\} $ are surjective we see that $M = \mathop{\mathrm{lim}}\nolimits M/M_ n$ (by completeness of $M$) surjects onto $\mathop{\mathrm{lim}}\nolimits M/(M_ n + N)$ by Algebra, Lemma 10.86.4. As $N$ is closed we see that the kernel of $M \to \mathop{\mathrm{lim}}\nolimits M/(M_ n + N)$ is $N$ (see Lemma 87.4.2). Finally, $M \to M/N$ is open by definition of the quotient topology. $\square$


Comments (2)

Comment #5984 by Dario Weißmann on

"The is a fundamental system ... " reads a bit awkwardly, maybe "The system ... is a fundamental system"?

There are also:

  • 2 comment(s) on Section 87.4: Topological rings and modules

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AMT. Beware of the difference between the letter 'O' and the digit '0'.