Loading web-font TeX/Math/Italic

The Stacks project

88.2 Two categories

Let A be a ring and let I \subset A be an ideal. In this section {}^\wedge will mean I-adic completion. Set A_ n = A/I^ n so that the I-adic completion of A is A^\wedge = \mathop{\mathrm{lim}}\nolimits A_ n. Let \mathcal{C} be the category

88.2.0.1
\begin{equation} \label{restricted-equation-C} \mathcal{C} = \left\{ \begin{matrix} \text{inverse systems }\ldots \to B_3 \to B_2 \to B_1 \\ \text{where }B_ n\text{ is a finite type }A_ n\text{-algebra,} \\ B_{n + 1} \to B_ n\text{ is an }A_{n + 1}\text{-algebra map} \\ \text{which induces }B_{n + 1}/I^ nB_{n + 1} \cong B_ n \end{matrix} \right\} \end{equation}

Morphisms in \mathcal{C} are given by systems of homomorphisms. Let \mathcal{C}' be the category

88.2.0.2
\begin{equation} \label{restricted-equation-C-prime} \mathcal{C}' = \left\{ \begin{matrix} A\text{-algebras }B\text{ which are }I\text{-adically complete} \\ \text{such that }B/IB\text{ is of finite type over }A/I \end{matrix} \right\} \end{equation}

Morphisms in \mathcal{C}' are A-algebra maps. There is a functor

88.2.0.3
\begin{equation} \label{restricted-equation-from-complete-to-systems} \mathcal{C}' \longrightarrow \mathcal{C},\quad B \longmapsto (B/I^ nB) \end{equation}

Indeed, since B/IB is of finite type over A/I the ring maps A_ n = A/I^ n \to B/I^ nB are of finite type by Algebra, Lemma 10.126.8.

Lemma 88.2.1. Let A be a ring and let I \subset A be a finitely generated ideal. The functor

\mathcal{C} \longrightarrow \mathcal{C}',\quad (B_ n) \longmapsto B = \mathop{\mathrm{lim}}\nolimits B_ n

is a quasi-inverse to (88.2.0.3). The completions A[x_1, \ldots , x_ r]^\wedge are in \mathcal{C}' and any object of \mathcal{C}' is of the form

B = A[x_1, \ldots , x_ r]^\wedge / J

for some ideal J \subset A[x_1, \ldots , x_ r]^\wedge .

Proof. Let (B_ n) be an object of \mathcal{C}. By Algebra, Lemma 10.98.2 we see that B = \mathop{\mathrm{lim}}\nolimits B_ n is I-adically complete and B/I^ nB = B_ n. Hence we see that B is an object of \mathcal{C}' and that we can recover the object (B_ n) by taking the quotients. Conversely, if B is an object of \mathcal{C}', then B = \mathop{\mathrm{lim}}\nolimits B/I^ nB by assumption. Thus B \mapsto (B/I^ nB) is a quasi-inverse to the functor of the lemma.

Since A[x_1, \ldots , x_ r]^\wedge = \mathop{\mathrm{lim}}\nolimits A_ n[x_1, \ldots , x_ r] it is an object of \mathcal{C}' by the first statement of the lemma. Finally, let B be an object of \mathcal{C}'. Choose b_1, \ldots , b_ r \in B whose images in B/IB generate B/IB as an algebra over A/I. Since B is I-adically complete, the A-algebra map A[x_1, \ldots , x_ r] \to B, x_ i \mapsto b_ i extends to an A-algebra map A[x_1, \ldots , x_ r]^\wedge \to B. To finish the proof we have to show this map is surjective which follows from Algebra, Lemma 10.96.1 as our map A[x_1, \ldots , x_ r] \to B is surjective modulo I and as B = B^\wedge . \square

We warn the reader that, in case A is not Noetherian, the quotient of an object of \mathcal{C}' may not be an object of \mathcal{C}'. See Examples, Lemma 110.8.1. Next we show this does not happen when A is Noetherian.

Lemma 88.2.2.reference Let A be a Noetherian ring and let I \subset A be an ideal. Then

  1. every object of the category \mathcal{C}' (88.2.0.2) is Noetherian,

  2. if B \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}') and J \subset B is an ideal, then B/J is an object of \mathcal{C}',

  3. for a finite type A-algebra C the I-adic completion C^\wedge is in \mathcal{C}',

  4. in particular the completion A[x_1, \ldots , x_ r]^\wedge is in \mathcal{C}'.

Proof. Part (4) follows from Algebra, Lemma 10.97.6 as A[x_1, \ldots , x_ r] is Noetherian (Algebra, Lemma 10.31.1). To see (1) by Lemma 88.2.1 we reduce to the case of the completion of the polynomial ring which we just proved. Part (2) follows from Algebra, Lemma 10.97.1 which tells us that ever finite B-module is IB-adically complete. Part (3) follows in the same manner as part (4). \square

Remark 88.2.3 (Base change). Let \varphi : A_1 \to A_2 be a ring map and let I_ i \subset A_ i be ideals such that \varphi (I_1^ c) \subset I_2 for some c \geq 1. This induces ring maps A_{1, cn} = A_1/I_1^{cn} \to A_2/I_2^ n = A_{2, n} for all n \geq 1. Let \mathcal{C}_ i be the category (88.2.0.1) for (A_ i, I_ i). There is a base change functor

88.2.3.1
\begin{equation} \label{restricted-equation-base-change-systems} \mathcal{C}_1 \longrightarrow \mathcal{C}_2,\quad (B_ n) \longmapsto (B_{cn} \otimes _{A_{1, cn}} A_{2, n}) \end{equation}

Let \mathcal{C}_ i' be the category (88.2.0.2) for (A_ i, I_ i). If I_2 is finitely generated, then there is a base change functor

88.2.3.2
\begin{equation} \label{restricted-equation-base-change-complete} \mathcal{C}_1' \longrightarrow \mathcal{C}_2',\quad B \longmapsto (B \otimes _{A_1} A_2)^\wedge \end{equation}

because in this case the completion is complete (Algebra, Lemma 10.96.3). If both I_1 and I_2 are finitely generated, then the two base change functors agree via the functors (88.2.0.3) which are equivalences by Lemma 88.2.1.

Remark 88.2.4 (Base change by closed immersion). Let A be a Noetherian ring and I \subset A an ideal. Let \mathfrak a \subset A be an ideal. Denote \bar A = A/\mathfrak a. Let \bar I \subset \bar A be an ideal such that I^ c \bar A \subset \bar I and \bar I^ d \subset I\bar A for some c, d \geq 1. In this case the base change functor (88.2.3.2) for (A, I) to (\bar A, \bar I) is given by B \mapsto \bar B = B/\mathfrak aB. Namely, we have

88.2.4.1
\begin{equation} \label{restricted-equation-base-change-to-closed} \bar B = (B \otimes _ A \bar A)^\wedge = (B/\mathfrak a B)^\wedge = B/\mathfrak a B \end{equation}

the last equality because any finite B-module is I-adically complete by Algebra, Lemma 10.97.1 and if annihilated by \mathfrak a also \bar I-adically complete by Algebra, Lemma 10.96.9.


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.