Remark 88.2.3 (Base change). Let $\varphi : A_1 \to A_2$ be a ring map and let $I_ i \subset A_ i$ be ideals such that $\varphi (I_1^ c) \subset I_2$ for some $c \geq 1$. This induces ring maps $A_{1, cn} = A_1/I_1^{cn} \to A_2/I_2^ n = A_{2, n}$ for all $n \geq 1$. Let $\mathcal{C}_ i$ be the category (88.2.0.1) for $(A_ i, I_ i)$. There is a base change functor

88.2.3.1
\begin{equation} \label{restricted-equation-base-change-systems} \mathcal{C}_1 \longrightarrow \mathcal{C}_2,\quad (B_ n) \longmapsto (B_{cn} \otimes _{A_{1, cn}} A_{2, n}) \end{equation}

Let $\mathcal{C}_ i'$ be the category (88.2.0.2) for $(A_ i, I_ i)$. If $I_2$ is finitely generated, then there is a base change functor

88.2.3.2
\begin{equation} \label{restricted-equation-base-change-complete} \mathcal{C}_1' \longrightarrow \mathcal{C}_2',\quad B \longmapsto (B \otimes _{A_1} A_2)^\wedge \end{equation}

because in this case the completion is complete (Algebra, Lemma 10.96.3). If both $I_1$ and $I_2$ are finitely generated, then the two base change functors agree via the functors (88.2.0.3) which are equivalences by Lemma 88.2.1.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).