The Stacks project

Lemma 10.97.6. Let $R$ be a Noetherian ring. Let $I$ be an ideal of $R$. The completion $R^\wedge $ of $R$ with respect to $I$ is Noetherian.

Proof. This is a consequence of Lemma 10.97.5. It can also be seen directly as follows. Choose generators $f_1, \ldots , f_ n$ of $I$. Consider the map

\[ R[[x_1, \ldots , x_ n]] \longrightarrow R^\wedge , \quad x_ i \longmapsto f_ i. \]

This is a well defined and surjective ring map (details omitted). Since $R[[x_1, \ldots , x_ n]]$ is Noetherian (see Lemma 10.31.2) we win. $\square$

Comments (0)

There are also:

  • 5 comment(s) on Section 10.97: Completion for Noetherian rings

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0316. Beware of the difference between the letter 'O' and the digit '0'.