Lemma 10.97.7. Let $R \to S$ be a local homomorphism of local rings $(R, \mathfrak m)$ and $(S, \mathfrak n)$. Let $R^\wedge$, resp. $S^\wedge$ be the completion of $R$, resp. $S$ with respect to $\mathfrak m$, resp. $\mathfrak n$. If $\mathfrak m$ and $\mathfrak n$ are finitely generated and $\dim _{\kappa (\mathfrak m)} S/\mathfrak mS < \infty$, then

1. $S^\wedge$ is equal to the $\mathfrak m$-adic completion of $S$, and

2. $S^\wedge$ is a finite $R^\wedge$-module.

Proof. We have $\mathfrak mS \subset \mathfrak n$ because $R \to S$ is a local ring map. The assumption $\dim _{\kappa (\mathfrak m)} S/\mathfrak mS < \infty$ implies that $S/\mathfrak mS$ is an Artinian ring, see Lemma 10.53.2. Hence has dimension $0$, see Lemma 10.60.5, hence $\mathfrak n = \sqrt{\mathfrak mS}$. This and the fact that $\mathfrak n$ is finitely generated implies that $\mathfrak n^ t \subset \mathfrak mS$ for some $t \geq 1$. By Lemma 10.96.9 we see that $S^\wedge$ can be identified with the $\mathfrak m$-adic completion of $S$. As $\mathfrak m$ is finitely generated we see from Lemma 10.96.3 that $S^\wedge$ and $R^\wedge$ are $\mathfrak m$-adically complete. At this point we may apply Lemma 10.96.12 to $S^\wedge$ as an $R^\wedge$-module to conclude. $\square$

There are also:

• 5 comment(s) on Section 10.97: Completion for Noetherian rings

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).