Remark 85.7.1. Let $\mathcal{C}_ n, f_\varphi , u_\varphi $ and $\mathcal{C}'_ n, f'_\varphi , u'_\varphi $ be as in Situation 85.3.3. Let $\mathcal{O}$ and $\mathcal{O}'$ be a sheaf of rings on $\mathcal{C}_{total}$ and $\mathcal{C}'_{total}$. We will say that $(h, h^\sharp )$ is a morphism between ringed simplicial sites if $h$ is a morphism between simplicial sites as in Remark 85.5.1 and $h^\sharp : h_{total}^{-1}\mathcal{O}' \to \mathcal{O}$ or equivalently $h^\sharp : \mathcal{O}' \to h_{total, *}\mathcal{O}$ is a homomorphism of sheaves of rings.
85.7 Morphisms of ringed simplicial sites
We continue the discussion of Section 85.5.
Lemma 85.7.2. Let $\mathcal{C}_ n, f_\varphi , u_\varphi $ and $\mathcal{C}'_ n, f'_\varphi , u'_\varphi $ be as in Situation 85.3.3. Let $\mathcal{O}$ and $\mathcal{O}'$ be a sheaf of rings on $\mathcal{C}_{total}$ and $\mathcal{C}'_{total}$. Let $(h, h^\sharp )$ be a morphism between simplicial sites as in Remark 85.7.1. Then we obtain a morphism of ringed topoi and commutative diagrams of ringed topoi where $g_ n$ and $g'_ n$ are as in Lemma 85.6.1. Moreover, we have $(g'_ n)^* \circ h_{total, *} = h_{n, *} \circ g_ n^*$ as functor $\textit{Mod}(\mathcal{O}) \to \textit{Mod}(\mathcal{O}'_ n)$.
Proof. Follows from Lemma 85.5.2 and 85.6.1 by keeping track of the sheaves of rings. A small point is that in order to define $h_ n$ as a morphism of ringed topoi we set $h_ n^\sharp = g_ n^{-1}h^\sharp : g_ n^{-1}h_{total}^{-1}\mathcal{O}' \to g_ n^{-1}\mathcal{O}$ which makes sense because $g_ n^{-1}h_{total}^{-1}\mathcal{O}' = h_ n^{-1}(g'_ n)^{-1}\mathcal{O}' = h_ n^{-1}\mathcal{O}'_ n$ and $g_ n^{-1}\mathcal{O} = \mathcal{O}_ n$. Note that $g_ n^*\mathcal{F} = g_ n^{-1}\mathcal{F}$ for a sheaf of $\mathcal{O}$-modules $\mathcal{F}$ and similarly for $g'_ n$ and this helps explain why $(g'_ n)^* \circ h_{total, *} = h_{n, *} \circ g_ n^*$ follows from the corresponding statement of Lemma 85.5.2. $\square$
Lemma 85.7.3. With notation and hypotheses as in Lemma 85.7.2. For $K \in D(\mathcal{O})$ we have $(g'_ n)^*Rh_{total, *}K = Rh_{n, *}g_ n^*K$.
Proof. Recall that $g_ n^* = g_ n^{-1}$ because $g_ n^{-1}\mathcal{O} = \mathcal{O}_ n$ by the construction in Lemma 85.6.1. In particular $g_ n^*$ is exact and $Lg_ n^*$ is given by applying $g_ n^*$ to any representative complex of modules. Similarly for $g'_ n$. There is a canonical base change map $(g'_ n)^*Rh_{total, *}K \to Rh_{n, *}g_ n^*K$, see Cohomology on Sites, Remark 21.19.3. By Cohomology on Sites, Lemma 21.20.7 the image of this in $D(\mathcal{C}'_ n)$ is the map $(g'_ n)^{-1}Rh_{total, *}K_{ab} \to Rh_{n, *}g_ n^{-1}K_{ab}$ where $K_{ab}$ is the image of $K$ in $D(\mathcal{C}_{total})$. This we proved to be an isomorphism in Lemma 85.5.3 and the result follows. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)