The Stacks project

83.6 Ringed simplicial sites

Let us endow our simplicial topos with a sheaf of rings.

Lemma 83.6.1. In Situation 83.3.3. Let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}_{total}$. There is a canonical morphism of ringed topoi $g_ n : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_ n), \mathcal{O}_ n) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_{total}), \mathcal{O})$ agreeing with the morphism $g_ n$ of Lemma 83.3.5 on underlying topoi. The functor $g_ n^* : \textit{Mod}(\mathcal{O}) \to \textit{Mod}(\mathcal{O}_ n)$ has a left adjoint $g_{n!}$. For $\mathcal{G}$ in $\textit{Mod}(\mathcal{O}_ n)$-modules the restriction of $g_{n!}\mathcal{G}$ to $\mathcal{C}_ m$ is

\[ \bigoplus \nolimits _{\varphi : [n] \to [m]} f_\varphi ^*\mathcal{G} \]

where $f_\varphi : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_ m), \mathcal{O}_ m) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_ n), \mathcal{O}_ n)$ is the morphism of ringed topoi agreeing with the previously defined $f_\varphi $ on topoi and using the map $\mathcal{O}(\varphi ) : f_\varphi ^{-1}\mathcal{O}_ n \to \mathcal{O}_ m$ on sheaves of rings.

Proof. By Lemma 83.3.5 we have $g_ n^{-1}\mathcal{O} = \mathcal{O}_ n$ and hence we obtain our morphism of ringed topoi. By Modules on Sites, Lemma 18.41.1 we obtain the adjoint $g_{n!}$. To prove the formula for $g_{n!}$ we first define a sheaf of $\mathcal{O}$-modules $\mathcal{H}$ on $\mathcal{C}_{total}$ with degree $m$ component the $\mathcal{O}_ m$-module

\[ \mathcal{H}_ m = \bigoplus \nolimits _{\varphi : [n] \to [m]} f_\varphi ^*\mathcal{G} \]

Given a map $\psi : [m] \to [m']$ the map $\mathcal{H}(\psi ) : f_\psi ^{-1}\mathcal{H}_ m \to \mathcal{H}_{m'}$ is given on components by

\[ f_\psi ^{-1} f_\varphi ^*\mathcal{G} \to f_\psi ^* f_\varphi ^*\mathcal{G} \to f_{\psi \circ \varphi }^*\mathcal{G} \]

Since this map $f_\psi ^{-1}\mathcal{H}_ m \to \mathcal{H}_{m'}$ is $\mathcal{O}(\psi ) : f_\psi ^{-1}\mathcal{O}_ m \to \mathcal{O}_{m'}$-semi-linear, this indeed does define an $\mathcal{O}$-module (use Lemma 83.3.4). Then one proves directly that

\[ \mathop{Mor}\nolimits _{\mathcal{O}_ n}(\mathcal{G}, \mathcal{F}_ n) = \mathop{Mor}\nolimits _{\mathcal{O}}(\mathcal{H}, \mathcal{F}) \]

proceeding as in the proof of Lemma 83.3.5. Thus $\mathcal{H} = g_{n!}\mathcal{G}$ as desired. $\square$

Lemma 83.6.2. In Situation 83.3.3. Let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}_{total}$. If $\mathcal{I}$ is injective in $\textit{Mod}(\mathcal{O})$, then $\mathcal{I}_ n$ is a totally acyclic sheaf on $\mathcal{C}_ n$.

Proof. This follows from Cohomology on Sites, Lemma 21.36.4 applied to the inclusion functor $\mathcal{C}_ n \to \mathcal{C}_{total}$ and its properties proven in Lemma 83.3.5. $\square$

Lemma 83.6.3. With assumptions as in Lemma 83.6.1 the functor $g_{n!} : \textit{Mod}(\mathcal{O}_ n) \to \textit{Mod}(\mathcal{O})$ is exact if the maps $f_\varphi ^{-1}\mathcal{O}_ n \to \mathcal{O}_ m$ are flat for all $\varphi : [n] \to [m]$.

Proof. Recall that $g_{n!}\mathcal{G}$ is the $\mathcal{O}$-module whose degree $m$ part is the $\mathcal{O}_ m$-module

\[ \bigoplus \nolimits _{\varphi : [n] \to [m]} f_\varphi ^*\mathcal{G} \]

Here the morphism of ringed topoi $f_\varphi : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_ m), \mathcal{O}_ m) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_ n), \mathcal{O}_ n)$ uses the map $f_\varphi ^{-1}\mathcal{O}_ n \to \mathcal{O}_ m$ of the statement of the lemma. If these maps are flat, then $f_\varphi ^*$ is exact (Modules on Sites, Lemma 18.31.2). By definition of the site $\mathcal{C}_{total}$ we see that these functors have the desired exactness properties and we conclude. $\square$

Lemma 83.6.4. In Situation 83.3.3. Let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}_{total}$ such that $f_\varphi ^{-1}\mathcal{O}_ n \to \mathcal{O}_ m$ is flat for all $\varphi : [n] \to [m]$. If $\mathcal{I}$ is injective in $\textit{Mod}(\mathcal{O})$, then $\mathcal{I}_ n$ is injective in $\textit{Mod}(\mathcal{O}_ n)$.

Proof. This follows from Homology, Lemma 12.29.1 and Lemma 83.6.3. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0D71. Beware of the difference between the letter 'O' and the digit '0'.