Remark 84.7.1. Let $\mathcal{C}_ n, f_\varphi , u_\varphi $ and $\mathcal{C}'_ n, f'_\varphi , u'_\varphi $ be as in Situation 84.3.3. Let $\mathcal{O}$ and $\mathcal{O}'$ be a sheaf of rings on $\mathcal{C}_{total}$ and $\mathcal{C}'_{total}$. We will say that $(h, h^\sharp )$ is a *morphism between ringed simplicial sites* if $h$ is a morphism between simplicial sites as in Remark 84.5.1 and $h^\sharp : h_{total}^{-1}\mathcal{O}' \to \mathcal{O}$ or equivalently $h^\sharp : \mathcal{O}' \to h_{total, *}\mathcal{O}$ is a homomorphism of sheaves of rings.

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)