Processing math: 100%

The Stacks project

Lemma 21.20.7. Let (\mathcal{C}, \mathcal{O}_\mathcal {C}) be a ringed site. Let K be an object of D(\mathcal{O}_\mathcal {C}) and denote K_{ab} its image in D(\underline{\mathbf{Z}}_\mathcal {C}).

  1. There is a canonical map R\Gamma (\mathcal{C}, K) \to R\Gamma (\mathcal{C}, K_{ab}) which is an isomorphism in D(\textit{Ab}).

  2. For any U \in \mathcal{C} there is a canonical map R\Gamma (U, K) \to R\Gamma (U, K_{ab}) which is an isomorphism in D(\textit{Ab}).

  3. Let f : (\mathcal{C}, \mathcal{O}_\mathcal {C}) \to (\mathcal{D}, \mathcal{O}_\mathcal {D}) be a morphism of ringed sites. There is a canonical map Rf_*K \to Rf_*(K_{ab}) which is an isomorphism in D(\underline{\mathbf{Z}}_\mathcal {D}).

Proof. The map is constructed as follows. Choose a K-injective complex \mathcal{I}^\bullet representing K. Choose a quasi-isomorpism \mathcal{I}^\bullet \to \mathcal{J}^\bullet where \mathcal{J}^\bullet is a K-injective complex of abelian groups. Then the map in (1) is given by \Gamma (\mathcal{C}, \mathcal{I}^\bullet ) \to \Gamma (\mathcal{C}, \mathcal{J}^\bullet ) (2) is given by \Gamma (U, \mathcal{I}^\bullet ) \to \Gamma (U, \mathcal{J}^\bullet ) and the map in (3) is given by f_*\mathcal{I}^\bullet \to f_*\mathcal{J}^\bullet . To show that these maps are isomorphisms, it suffices to prove they induce isomorphisms on cohomology groups and cohomology sheaves. By Lemmas 21.20.2 and 21.20.6 it suffices to show that the map

H^0(\mathcal{C}, K) \longrightarrow H^0(\mathcal{C}, K_{ab})

is an isomorphism. Observe that

H^0(\mathcal{C}, K) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_\mathcal {C})}(\mathcal{O}_\mathcal {C}, K)

and similarly for the other group. Choose any complex \mathcal{K}^\bullet of \mathcal{O}_\mathcal {C}-modules representing K. By construction of the derived category as a localization we have

\mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_\mathcal {C})}(\mathcal{O}_\mathcal {C}, K) = \mathop{\mathrm{colim}}\nolimits _{s : \mathcal{F}^\bullet \to \mathcal{O}_\mathcal {C}} \mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{O}_\mathcal {C})}(\mathcal{F}^\bullet , \mathcal{K}^\bullet )

where the colimit is over quasi-isomorphisms s of complexes of \mathcal{O}_\mathcal {C}-modules. Similarly, we have

\mathop{\mathrm{Hom}}\nolimits _{D(\underline{\mathbf{Z}}_\mathcal {C})} (\underline{\mathbf{Z}}_\mathcal {C}, K) = \mathop{\mathrm{colim}}\nolimits _{s : \mathcal{G}^\bullet \to \underline{\mathbf{Z}}_\mathcal {C}} \mathop{\mathrm{Hom}}\nolimits _{K(\underline{\mathbf{Z}}_\mathcal {C})} (\mathcal{G}^\bullet , \mathcal{K}^\bullet )

Next, we observe that the quasi-isomorphisms s : \mathcal{G}^\bullet \to \underline{\mathbf{Z}}_\mathcal {C} with \mathcal{G}^\bullet bounded above complex of flat \underline{\mathbf{Z}}_\mathcal {C}-modules is cofinal in the system. (This follows from Modules on Sites, Lemma 18.28.8 and Derived Categories, Lemma 13.15.4; see discussion in Section 21.17.) Hence we can construct an inverse to the map H^0(\mathcal{C}, K) \longrightarrow H^0(\mathcal{C}, K_{ab}) by representing an element \xi \in H^0(\mathcal{C}, K_{ab}) by a pair

(s : \mathcal{G}^\bullet \to \underline{\mathbf{Z}}_\mathcal {C}, a : \mathcal{G}^\bullet \to \mathcal{K}^\bullet )

with \mathcal{G}^\bullet a bounded above complex of flat \underline{\mathbf{Z}}_\mathcal {C}-modules and sending this to

(\mathcal{G}^\bullet \otimes _{\underline{\mathbf{Z}}_\mathcal {C}} \mathcal{O}_\mathcal {C} \to \mathcal{O}_\mathcal {C}, \mathcal{G}^\bullet \otimes _{\underline{\mathbf{Z}}_\mathcal {C}} \mathcal{O}_\mathcal {C} \to \mathcal{K}^\bullet )

The only thing to note here is that the first arrow is a quasi-isomorphism by Lemmas 21.17.12 and 21.17.8. We omit the detailed verification that this construction is indeed an inverse. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.