## 21.17 Flat resolutions

In this section we redo the arguments of Cohomology, Section 20.26 in the setting of ringed sites and ringed topoi.

Lemma 21.17.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{G}^\bullet$ be a complex of $\mathcal{O}$-modules. The functors

$K(\textit{Mod}(\mathcal{O})) \longrightarrow K(\textit{Mod}(\mathcal{O})), \quad \mathcal{F}^\bullet \longmapsto \text{Tot}(\mathcal{G}^\bullet \otimes _\mathcal {O} \mathcal{F}^\bullet )$

and

$K(\textit{Mod}(\mathcal{O})) \longrightarrow K(\textit{Mod}(\mathcal{O})), \quad \mathcal{F}^\bullet \longmapsto \text{Tot}(\mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{G}^\bullet )$

are exact functors of triangulated categories.

Proof. This follows from Derived Categories, Remark 13.10.9. $\square$

Definition 21.17.2. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. A complex $\mathcal{K}^\bullet$ of $\mathcal{O}$-modules is called K-flat if for every acyclic complex $\mathcal{F}^\bullet$ of $\mathcal{O}$-modules the complex

$\text{Tot}(\mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{K}^\bullet )$

is acyclic.

Lemma 21.17.3. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{K}^\bullet$ be a K-flat complex. Then the functor

$K(\textit{Mod}(\mathcal{O})) \longrightarrow K(\textit{Mod}(\mathcal{O})), \quad \mathcal{F}^\bullet \longmapsto \text{Tot}(\mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{K}^\bullet )$

transforms quasi-isomorphisms into quasi-isomorphisms.

Proof. Follows from Lemma 21.17.1 and the fact that quasi-isomorphisms are characterized by having acyclic cones. $\square$

Lemma 21.17.4. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $U$ be an object of $\mathcal{C}$. If $\mathcal{K}^\bullet$ is a K-flat complex of $\mathcal{O}$-modules, then $\mathcal{K}^\bullet |_ U$ is a K-flat complex of $\mathcal{O}_ U$-modules.

Proof. Let $\mathcal{G}^\bullet$ be an exact complex of $\mathcal{O}_ U$-modules. Since $j_{U!}$ is exact (Modules on Sites, Lemma 18.19.3) and $\mathcal{K}^\bullet$ is a K-flat complex of $\mathcal{O}$-modules we see that the complex

$j_{U!}(\text{Tot}(\mathcal{G}^\bullet \otimes _{\mathcal{O}_ U} \mathcal{K}^\bullet |_ U)) = \text{Tot}(j_{U!}\mathcal{G}^\bullet \otimes _\mathcal {O} \mathcal{K}^\bullet )$

is exact. Here the equality comes from Modules on Sites, Lemma 18.27.9 and the fact that $j_{U!}$ commutes with direct sums (as a left adjoint). We conclude because $j_{U!}$ reflects exactness by Modules on Sites, Lemma 18.19.4. $\square$

Lemma 21.17.5. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. If $\mathcal{K}^\bullet$, $\mathcal{L}^\bullet$ are K-flat complexes of $\mathcal{O}$-modules, then $\text{Tot}(\mathcal{K}^\bullet \otimes _\mathcal {O} \mathcal{L}^\bullet )$ is a K-flat complex of $\mathcal{O}$-modules.

Proof. Follows from the isomorphism

$\text{Tot}(\mathcal{M}^\bullet \otimes _\mathcal {O} \text{Tot}(\mathcal{K}^\bullet \otimes _\mathcal {O} \mathcal{L}^\bullet )) = \text{Tot}(\text{Tot}(\mathcal{M}^\bullet \otimes _\mathcal {O} \mathcal{K}^\bullet ) \otimes _\mathcal {O} \mathcal{L}^\bullet )$

and the definition. $\square$

Lemma 21.17.6. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $(\mathcal{K}_1^\bullet , \mathcal{K}_2^\bullet , \mathcal{K}_3^\bullet )$ be a distinguished triangle in $K(\textit{Mod}(\mathcal{O}))$. If two out of three of $\mathcal{K}_ i^\bullet$ are K-flat, so is the third.

Proof. Follows from Lemma 21.17.1 and the fact that in a distinguished triangle in $K(\textit{Mod}(\mathcal{O}))$ if two out of three are acyclic, so is the third. $\square$

Lemma 21.17.7. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $0 \to \mathcal{K}_1^\bullet \to \mathcal{K}_2^\bullet \to \mathcal{K}_3^\bullet \to 0$ be a short exact sequence of complexes such that the terms of $\mathcal{K}_3^\bullet$ are flat $\mathcal{O}$-modules. If two out of three of $\mathcal{K}_ i^\bullet$ are K-flat, so is the third.

Proof. By Modules on Sites, Lemma 18.28.9 for every complex $\mathcal{L}^\bullet$ we obtain a short exact sequence

$0 \to \text{Tot}(\mathcal{L}^\bullet \otimes _\mathcal {O} \mathcal{K}_1^\bullet ) \to \text{Tot}(\mathcal{L}^\bullet \otimes _\mathcal {O} \mathcal{K}_1^\bullet ) \to \text{Tot}(\mathcal{L}^\bullet \otimes _\mathcal {O} \mathcal{K}_1^\bullet ) \to 0$

of complexes. Hence the lemma follows from the long exact sequence of cohomology sheaves and the definition of K-flat complexes. $\square$

Lemma 21.17.8. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. A bounded above complex of flat $\mathcal{O}$-modules is K-flat.

Proof. Let $\mathcal{K}^\bullet$ be a bounded above complex of flat $\mathcal{O}$-modules. Let $\mathcal{L}^\bullet$ be an acyclic complex of $\mathcal{O}$-modules. Note that $\mathcal{L}^\bullet = \mathop{\mathrm{colim}}\nolimits _ m \tau _{\leq m}\mathcal{L}^\bullet$ where we take termwise colimits. Hence also

$\text{Tot}(\mathcal{K}^\bullet \otimes _\mathcal {O} \mathcal{L}^\bullet ) = \mathop{\mathrm{colim}}\nolimits _ m \text{Tot}( \mathcal{K}^\bullet \otimes _\mathcal {O} \tau _{\leq m}\mathcal{L}^\bullet )$

termwise. Hence to prove the complex on the left is acyclic it suffices to show each of the complexes on the right is acyclic. Since $\tau _{\leq m}\mathcal{L}^\bullet$ is acyclic this reduces us to the case where $\mathcal{L}^\bullet$ is bounded above. In this case the spectral sequence of Homology, Lemma 12.25.3 has

${}'E_1^{p, q} = H^ p(\mathcal{L}^\bullet \otimes _ R \mathcal{K}^ q)$

which is zero as $\mathcal{K}^ q$ is flat and $\mathcal{L}^\bullet$ acyclic. Hence we win. $\square$

Lemma 21.17.9. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{K}_1^\bullet \to \mathcal{K}_2^\bullet \to \ldots$ be a system of K-flat complexes. Then $\mathop{\mathrm{colim}}\nolimits _ i \mathcal{K}_ i^\bullet$ is K-flat.

Proof. Because we are taking termwise colimits it is clear that

$\mathop{\mathrm{colim}}\nolimits _ i \text{Tot}( \mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{K}_ i^\bullet ) = \text{Tot}(\mathcal{F}^\bullet \otimes _\mathcal {O} \mathop{\mathrm{colim}}\nolimits _ i \mathcal{K}_ i^\bullet )$

Hence the lemma follows from the fact that filtered colimits are exact. $\square$

Lemma 21.17.10. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. For any complex $\mathcal{G}^\bullet$ of $\mathcal{O}$-modules there exists a commutative diagram of complexes of $\mathcal{O}$-modules

$\xymatrix{ \mathcal{K}_1^\bullet \ar[d] \ar[r] & \mathcal{K}_2^\bullet \ar[d] \ar[r] & \ldots \\ \tau _{\leq 1}\mathcal{G}^\bullet \ar[r] & \tau _{\leq 2}\mathcal{G}^\bullet \ar[r] & \ldots }$

with the following properties: (1) the vertical arrows are quasi-isomorphisms and termwise surjective, (2) each $\mathcal{K}_ n^\bullet$ is a bounded above complex whose terms are direct sums of $\mathcal{O}$-modules of the form $j_{U!}\mathcal{O}_ U$, and (3) the maps $\mathcal{K}_ n^\bullet \to \mathcal{K}_{n + 1}^\bullet$ are termwise split injections whose cokernels are direct sums of $\mathcal{O}$-modules of the form $j_{U!}\mathcal{O}_ U$. Moreover, the map $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^\bullet \to \mathcal{G}^\bullet$ is a quasi-isomorphism.

Proof. The existence of the diagram and properties (1), (2), (3) follows immediately from Modules on Sites, Lemma 18.28.8 and Derived Categories, Lemma 13.29.1. The induced map $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^\bullet \to \mathcal{G}^\bullet$ is a quasi-isomorphism because filtered colimits are exact. $\square$

Lemma 21.17.11. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. For any complex $\mathcal{G}^\bullet$ there exists a $K$-flat complex $\mathcal{K}^\bullet$ whose terms are flat $\mathcal{O}$-modules and a quasi-isomorphism $\mathcal{K}^\bullet \to \mathcal{G}^\bullet$ which is termwise surjective.

Proof. Choose a diagram as in Lemma 21.17.10. Each complex $\mathcal{K}_ n^\bullet$ is a bounded above complex of flat modules, see Modules on Sites, Lemma 18.28.7. Hence $\mathcal{K}_ n^\bullet$ is K-flat by Lemma 21.17.8. Thus $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^\bullet$ is K-flat by Lemma 21.17.9. The induced map $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^\bullet \to \mathcal{G}^\bullet$ is a quasi-isomorphism and termwise surjective by construction. Property (3) of Lemma 21.17.10 shows that $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^ m$ is a direct sum of flat modules and hence flat which proves the final assertion. $\square$

Lemma 21.17.12. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\alpha : \mathcal{P}^\bullet \to \mathcal{Q}^\bullet$ be a quasi-isomorphism of K-flat complexes of $\mathcal{O}$-modules. For every complex $\mathcal{F}^\bullet$ of $\mathcal{O}$-modules the induced map

$\text{Tot}(\text{id}_{\mathcal{F}^\bullet } \otimes \alpha ) : \text{Tot}(\mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{P}^\bullet ) \longrightarrow \text{Tot}(\mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{Q}^\bullet )$

is a quasi-isomorphism.

Proof. Choose a quasi-isomorphism $\mathcal{K}^\bullet \to \mathcal{F}^\bullet$ with $\mathcal{K}^\bullet$ a K-flat complex, see Lemma 21.17.11. Consider the commutative diagram

$\xymatrix{ \text{Tot}(\mathcal{K}^\bullet \otimes _\mathcal {O} \mathcal{P}^\bullet ) \ar[r] \ar[d] & \text{Tot}(\mathcal{K}^\bullet \otimes _\mathcal {O} \mathcal{Q}^\bullet ) \ar[d] \\ \text{Tot}(\mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{P}^\bullet ) \ar[r] & \text{Tot}(\mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{Q}^\bullet ) }$

The result follows as by Lemma 21.17.3 the vertical arrows and the top horizontal arrow are quasi-isomorphisms. $\square$

Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{F}^\bullet$ be an object of $D(\mathcal{O})$. Choose a K-flat resolution $\mathcal{K}^\bullet \to \mathcal{F}^\bullet$, see Lemma 21.17.11. By Lemma 21.17.1 we obtain an exact functor of triangulated categories

$K(\mathcal{O}) \longrightarrow K(\mathcal{O}), \quad \mathcal{G}^\bullet \longmapsto \text{Tot}(\mathcal{G}^\bullet \otimes _\mathcal {O} \mathcal{K}^\bullet )$

By Lemma 21.17.3 this functor induces a functor $D(\mathcal{O}) \to D(\mathcal{O})$ simply because $D(\mathcal{O})$ is the localization of $K(\mathcal{O})$ at quasi-isomorphisms. By Lemma 21.17.12 the resulting functor (up to isomorphism) does not depend on the choice of the K-flat resolution.

Definition 21.17.13. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{F}^\bullet$ be an object of $D(\mathcal{O})$. The derived tensor product

$- \otimes _\mathcal {O}^{\mathbf{L}} \mathcal{F}^\bullet : D(\mathcal{O}) \longrightarrow D(\mathcal{O})$

is the exact functor of triangulated categories described above.

It is clear from our explicit constructions that there is a canonical isomorphism

$\mathcal{F}^\bullet \otimes _\mathcal {O}^{\mathbf{L}} \mathcal{G}^\bullet \cong \mathcal{G}^\bullet \otimes _\mathcal {O}^{\mathbf{L}} \mathcal{F}^\bullet$

for $\mathcal{G}^\bullet$ and $\mathcal{F}^\bullet$ in $D(\mathcal{O})$. Hence when we write $\mathcal{F}^\bullet \otimes _\mathcal {O}^{\mathbf{L}} \mathcal{G}^\bullet$ we will usually be agnostic about which variable we are using to define the derived tensor product with.

Definition 21.17.14. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{F}$, $\mathcal{G}$ be $\mathcal{O}$-modules. The Tor's of $\mathcal{F}$ and $\mathcal{G}$ are defined by the formula

$\text{Tor}_ p^\mathcal {O}(\mathcal{F}, \mathcal{G}) = H^{-p}(\mathcal{F} \otimes _\mathcal {O}^\mathbf {L} \mathcal{G})$

with derived tensor product as defined above.

This definition implies that for every short exact sequence of $\mathcal{O}$-modules $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ we have a long exact cohomology sequence

$\xymatrix{ \mathcal{F}_1 \otimes _\mathcal {O} \mathcal{G} \ar[r] & \mathcal{F}_2 \otimes _\mathcal {O} \mathcal{G} \ar[r] & \mathcal{F}_3 \otimes _\mathcal {O} \mathcal{G} \ar[r] & 0 \\ \text{Tor}_1^\mathcal {O}(\mathcal{F}_1, \mathcal{G}) \ar[r] & \text{Tor}_1^\mathcal {O}(\mathcal{F}_2, \mathcal{G}) \ar[r] & \text{Tor}_1^\mathcal {O}(\mathcal{F}_3, \mathcal{G}) \ar[ull] }$

for every $\mathcal{O}$-module $\mathcal{G}$. This will be called the long exact sequence of $\text{Tor}$ associated to the situation.

Lemma 21.17.15. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{F}$ be an $\mathcal{O}$-module. The following are equivalent

1. $\mathcal{F}$ is a flat $\mathcal{O}$-module, and

2. $\text{Tor}_1^\mathcal {O}(\mathcal{F}, \mathcal{G}) = 0$ for every $\mathcal{O}$-module $\mathcal{G}$.

Proof. If $\mathcal{F}$ is flat, then $\mathcal{F} \otimes _\mathcal {O} -$ is an exact functor and the satellites vanish. Conversely assume (2) holds. Then if $\mathcal{G} \to \mathcal{H}$ is injective with cokernel $\mathcal{Q}$, the long exact sequence of $\text{Tor}$ shows that the kernel of $\mathcal{F} \otimes _\mathcal {O} \mathcal{G} \to \mathcal{F} \otimes _\mathcal {O} \mathcal{H}$ is a quotient of $\text{Tor}_1^\mathcal {O}(\mathcal{F}, \mathcal{Q})$ which is zero by assumption. Hence $\mathcal{F}$ is flat. $\square$

Lemma 21.17.16. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{K}^\bullet$ be a K-flat, acyclic complex with flat terms. Then $\mathcal{F} = \mathop{\mathrm{Ker}}(\mathcal{K}^ n \to \mathcal{K}^{n + 1})$ is a flat $\mathcal{O}$-module.

Proof. Observe that

$\ldots \to \mathcal{K}^{n - 2} \to \mathcal{K}^{n - 1} \to \mathcal{F} \to 0$

is a flat resolution of our module $\mathcal{F}$. Since a bounded above complex of flat modules is K-flat (Lemma 21.17.8) we may use this resolution to compute $\text{Tor}_ i(\mathcal{F}, \mathcal{G})$ for any $\mathcal{O}$-module $\mathcal{G}$. On the one hand $\mathcal{K}^\bullet \otimes _\mathcal {O}^\mathbf {L} \mathcal{G}$ is zero in $D(\mathcal{O})$ because $\mathcal{K}^\bullet$ is acyclic and on the other hand it is represented by $\mathcal{K}^\bullet \otimes _\mathcal {O} \mathcal{G}$. Hence we see that

$\mathcal{K}^{n - 3} \otimes _\mathcal {O} \mathcal{G} \to \mathcal{K}^{n - 2} \otimes _\mathcal {O} \mathcal{G} \to \mathcal{K}^{n - 1} \otimes _\mathcal {O} \mathcal{G}$

is exact. Thus $\text{Tor}_1(\mathcal{F}, \mathcal{G}) = 0$ and we conclude by Lemma 21.17.15. $\square$

Lemma 21.17.17. Let $(\mathcal{C}, \mathcal{O})$ be a ringed space. Let $a : \mathcal{K}^\bullet \to \mathcal{L}^\bullet$ be a map of complexes of $\mathcal{O}$-modules. If $\mathcal{K}^\bullet$ is K-flat, then there exist a complex $\mathcal{N}^\bullet$ and maps of complexes $b : \mathcal{K}^\bullet \to \mathcal{N}^\bullet$ and $c : \mathcal{N}^\bullet \to \mathcal{L}^\bullet$ such that

1. $\mathcal{N}^\bullet$ is K-flat,

2. $c$ is a quasi-isomorphism,

3. $a$ is homotopic to $c \circ b$.

If the terms of $\mathcal{K}^\bullet$ are flat, then we may choose $\mathcal{N}^\bullet$, $b$, and $c$ such that the same is true for $\mathcal{N}^\bullet$.

Proof. We will use that the homotopy category $K(\textit{Mod}(\mathcal{O}))$ is a triangulated category, see Derived Categories, Proposition 13.10.3. Choose a distinguished triangle $\mathcal{K}^\bullet \to \mathcal{L}^\bullet \to \mathcal{C}^\bullet \to \mathcal{K}^\bullet $. Choose a quasi-isomorphism $\mathcal{M}^\bullet \to \mathcal{C}^\bullet$ with $\mathcal{M}^\bullet$ K-flat with flat terms, see Lemma 21.17.11. By the axioms of triangulated categories, we may fit the composition $\mathcal{M}^\bullet \to \mathcal{C}^\bullet \to \mathcal{K}^\bullet $ into a distinguished triangle $\mathcal{K}^\bullet \to \mathcal{N}^\bullet \to \mathcal{M}^\bullet \to \mathcal{K}^\bullet $. By Lemma 21.17.6 we see that $\mathcal{N}^\bullet$ is K-flat. Again using the axioms of triangulated categories, we can choose a map $\mathcal{N}^\bullet \to \mathcal{L}^\bullet$ fitting into the following morphism of distinghuised triangles

$\xymatrix{ \mathcal{K}^\bullet \ar[r] \ar[d] & \mathcal{N}^\bullet \ar[r] \ar[d] & \mathcal{M}^\bullet \ar[r] \ar[d] & \mathcal{K}^\bullet  \ar[d] \\ \mathcal{K}^\bullet \ar[r] & \mathcal{L}^\bullet \ar[r] & \mathcal{C}^\bullet \ar[r] & \mathcal{K}^\bullet  }$

Since two out of three of the arrows are quasi-isomorphisms, so is the third arrow $\mathcal{N}^\bullet \to \mathcal{L}^\bullet$ by the long exact sequences of cohomology associated to these distinguished triangles (or you can look at the image of this diagram in $D(\mathcal{O})$ and use Derived Categories, Lemma 13.4.3 if you like). This finishes the proof of (1), (2), and (3). To prove the final assertion, we may choose $\mathcal{N}^\bullet$ such that $\mathcal{N}^ n \cong \mathcal{M}^ n \oplus \mathcal{K}^ n$, see Derived Categories, Lemma 13.10.7. Hence we get the desired flatness if the terms of $\mathcal{K}^\bullet$ are flat. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).