Lemma 21.17.17. Let $(\mathcal{C}, \mathcal{O})$ be a ringed space. Let $a : \mathcal{K}^\bullet \to \mathcal{L}^\bullet$ be a map of complexes of $\mathcal{O}$-modules. If $\mathcal{K}^\bullet$ is K-flat, then there exist a complex $\mathcal{N}^\bullet$ and maps of complexes $b : \mathcal{K}^\bullet \to \mathcal{N}^\bullet$ and $c : \mathcal{N}^\bullet \to \mathcal{L}^\bullet$ such that

1. $\mathcal{N}^\bullet$ is K-flat,

2. $c$ is a quasi-isomorphism,

3. $a$ is homotopic to $c \circ b$.

If the terms of $\mathcal{K}^\bullet$ are flat, then we may choose $\mathcal{N}^\bullet$, $b$, and $c$ such that the same is true for $\mathcal{N}^\bullet$.

Proof. We will use that the homotopy category $K(\textit{Mod}(\mathcal{O}))$ is a triangulated category, see Derived Categories, Proposition 13.10.3. Choose a distinguished triangle $\mathcal{K}^\bullet \to \mathcal{L}^\bullet \to \mathcal{C}^\bullet \to \mathcal{K}^\bullet $. Choose a quasi-isomorphism $\mathcal{M}^\bullet \to \mathcal{C}^\bullet$ with $\mathcal{M}^\bullet$ K-flat with flat terms, see Lemma 21.17.11. By the axioms of triangulated categories, we may fit the composition $\mathcal{M}^\bullet \to \mathcal{C}^\bullet \to \mathcal{K}^\bullet $ into a distinguished triangle $\mathcal{K}^\bullet \to \mathcal{N}^\bullet \to \mathcal{M}^\bullet \to \mathcal{K}^\bullet $. By Lemma 21.17.6 we see that $\mathcal{N}^\bullet$ is K-flat. Again using the axioms of triangulated categories, we can choose a map $\mathcal{N}^\bullet \to \mathcal{L}^\bullet$ fitting into the following morphism of distinghuised triangles

$\xymatrix{ \mathcal{K}^\bullet \ar[r] \ar[d] & \mathcal{N}^\bullet \ar[r] \ar[d] & \mathcal{M}^\bullet \ar[r] \ar[d] & \mathcal{K}^\bullet  \ar[d] \\ \mathcal{K}^\bullet \ar[r] & \mathcal{L}^\bullet \ar[r] & \mathcal{C}^\bullet \ar[r] & \mathcal{K}^\bullet  }$

Since two out of three of the arrows are quasi-isomorphisms, so is the third arrow $\mathcal{N}^\bullet \to \mathcal{L}^\bullet$ by the long exact sequences of cohomology associated to these distinguished triangles (or you can look at the image of this diagram in $D(\mathcal{O})$ and use Derived Categories, Lemma 13.4.3 if you like). This finishes the proof of (1), (2), and (3). To prove the final assertion, we may choose $\mathcal{N}^\bullet$ such that $\mathcal{N}^ n \cong \mathcal{M}^ n \oplus \mathcal{K}^ n$, see Derived Categories, Lemma 13.10.7. Hence we get the desired flatness if the terms of $\mathcal{K}^\bullet$ are flat. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).