The Stacks project

21.18 Derived pullback

Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ be a morphism of ringed topoi. We can use K-flat resolutions to define a derived pullback functor

\[ Lf^* : D(\mathcal{O}') \to D(\mathcal{O}) \]

Lemma 21.18.1. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}') \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})$ be a morphism of ringed topoi. Let $\mathcal{K}^\bullet $ be a K-flat complex of $\mathcal{O}$-modules whose terms are flat $\mathcal{O}$-modules. Then $f^*\mathcal{K}^\bullet $ is a K-flat complex of $\mathcal{O}'$-modules whose terms are flat $\mathcal{O}'$-modules.

Proof. The terms $f^*\mathcal{K}^ n$ are flat $\mathcal{O}'$-modules by Modules on Sites, Lemma 18.39.1. Choose a diagram

\[ \xymatrix{ \mathcal{K}_1^\bullet \ar[d] \ar[r] & \mathcal{K}_2^\bullet \ar[d] \ar[r] & \ldots \\ \tau _{\leq 1}\mathcal{K}^\bullet \ar[r] & \tau _{\leq 2}\mathcal{K}^\bullet \ar[r] & \ldots } \]

as in Lemma 21.17.10. We will use all of the properties stated in the lemma without further mention. Each $\mathcal{K}_ n^\bullet $ is a bounded above complex of flat modules, see Modules on Sites, Lemma 18.28.7. Consider the short exact sequence of complexes

\[ 0 \to \mathcal{M}^\bullet \to \mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^\bullet \to \mathcal{K}^\bullet \to 0 \]

defining $\mathcal{M}^\bullet $. By Lemmas 21.17.8 and 21.17.9 the complex $\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^\bullet $ is K-flat and by Modules on Sites, Lemma 18.28.5 it has flat terms. By Modules on Sites, Lemma 18.28.10 $\mathcal{M}^\bullet $ has flat terms, by Lemma 21.17.7 $\mathcal{M}^\bullet $ is K-flat, and by the long exact cohomology sequence $\mathcal{M}^\bullet $ is acyclic (because the second arrow is a quasi-isomorphism). The pullback $f^*(\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^\bullet ) = \mathop{\mathrm{colim}}\nolimits f^*\mathcal{K}_ n^\bullet $ is a colimit of bounded below complexes of flat $\mathcal{O}'$-modules and hence is K-flat (by the same lemmas as above). The pullback of our short exact sequence

\[ 0 \to f^*\mathcal{M}^\bullet \to f^*(\mathop{\mathrm{colim}}\nolimits \mathcal{K}_ n^\bullet ) \to f^*\mathcal{K}^\bullet \to 0 \]

is a short exact sequence of complexes by Modules on Sites, Lemma 18.39.4. Hence by Lemma 21.17.7 it suffices to show that $f^*\mathcal{M}^\bullet $ is K-flat. This reduces us to the case discussed in the next paragraph.

Assume $\mathcal{K}^\bullet $ is acyclic as well as K-flat and with flat terms. Then Lemma 21.17.16 guarantees that all terms of $\tau _{\leq n}\mathcal{K}^\bullet $ are flat $\mathcal{O}$-modules. We choose a diagram as above and we will use all the properties proven above for this diagram. Denote $\mathcal{M}_ n^\bullet $ the kernel of the map of complexes $\mathcal{K}_ n^\bullet \to \tau _{\leq n}\mathcal{K}^\bullet $ so that we have short exact sequences of complexes

\[ 0 \to \mathcal{M}_ n^\bullet \to \mathcal{K}_ n^\bullet \to \tau _{\leq n}\mathcal{K}^\bullet \to 0 \]

By Modules on Sites, Lemma 18.28.10 we see that the terms of the complex $\mathcal{M}_ n^\bullet $ are flat. Hence we see that $\mathcal{M} = \mathop{\mathrm{colim}}\nolimits \mathcal{M}_ n^\bullet $ is a filtered colimit of bounded below complexes of flat modules in this case. Thus $f^*\mathcal{M}^\bullet $ is K-flat (same argument as above) and we win. $\square$

Lemma 21.18.2. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ be a morphism of ringed topoi. There exists an exact functor

\[ Lf^* : D(\mathcal{O}') \longrightarrow D(\mathcal{O}) \]

of triangulated categories so that $Lf^*\mathcal{K}^\bullet = f^*\mathcal{K}^\bullet $ for any K-flat complex $\mathcal{K}^\bullet $ with flat terms and in particular for any bounded above complex of flat $\mathcal{O}'$-modules.

Proof. To see this we use the general theory developed in Derived Categories, Section 13.14. Set $\mathcal{D} = K(\mathcal{O}')$ and $\mathcal{D}' = D(\mathcal{O})$. Let us write $F : \mathcal{D} \to \mathcal{D}'$ the exact functor of triangulated categories defined by the rule $F(\mathcal{G}^\bullet ) = f^*\mathcal{G}^\bullet $. We let $S$ be the set of quasi-isomorphisms in $\mathcal{D} = K(\mathcal{O}')$. This gives a situation as in Derived Categories, Situation 13.14.1 so that Derived Categories, Definition 13.14.2 applies. We claim that $LF$ is everywhere defined. This follows from Derived Categories, Lemma 13.14.15 with $\mathcal{P} \subset \mathop{\mathrm{Ob}}\nolimits (\mathcal{D})$ the collection of K-flat complexes $\mathcal{K}^\bullet $ with flat terms. Namely, (1) follows from Lemma 21.17.11 and to see (2) we have to show that for a quasi-isomorphism $\mathcal{K}_1^\bullet \to \mathcal{K}_2^\bullet $ between elements of $\mathcal{P}$ the map $f^*\mathcal{K}_1^\bullet \to f^*\mathcal{K}_2^\bullet $ is a quasi-isomorphism. To see this write this as

\[ f^{-1}\mathcal{K}_1^\bullet \otimes _{f^{-1}\mathcal{O}'} \mathcal{O} \longrightarrow f^{-1}\mathcal{K}_2^\bullet \otimes _{f^{-1}\mathcal{O}'} \mathcal{O} \]

The functor $f^{-1}$ is exact, hence the map $f^{-1}\mathcal{K}_1^\bullet \to f^{-1}\mathcal{K}_2^\bullet $ is a quasi-isomorphism. The complexes $f^{-1}\mathcal{K}_1^\bullet $ and $f^{-1}\mathcal{K}_2^\bullet $ are K-flat complexes of $f^{-1}\mathcal{O}'$-modules by Lemma 21.18.1 because we can consider the morphism of ringed topoi $(\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), f^{-1}\mathcal{O}') \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$. Hence Lemma 21.17.12 guarantees that the displayed map is a quasi-isomorphism. Thus we obtain a derived functor

\[ LF : D(\mathcal{O}') = S^{-1}\mathcal{D} \longrightarrow \mathcal{D}' = D(\mathcal{O}) \]

see Derived Categories, Equation ( Finally, Derived Categories, Lemma 13.14.15 also guarantees that $LF(\mathcal{K}^\bullet ) = F(\mathcal{K}^\bullet ) = f^*\mathcal{K}^\bullet $ when $\mathcal{K}^\bullet $ is in $\mathcal{P}$. The proof is finished by observing that bounded above complexes of flat modules are in $\mathcal{P}$ by Lemma 21.17.8. $\square$

Lemma 21.18.3. Consider morphisms of ringed topoi $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ and $g : (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{E}), \mathcal{O}_\mathcal {E})$. Then $Lf^* \circ Lg^* = L(g \circ f)^*$ as functors $D(\mathcal{O}_\mathcal {E}) \to D(\mathcal{O}_\mathcal {C})$.

Proof. Let $E$ be an object of $D(\mathcal{O}_\mathcal {E})$. We may represent $E$ by a K-flat complex $\mathcal{K}^\bullet $ with flat terms, see Lemma 21.17.11. By construction $Lg^*E$ is computed by $g^*\mathcal{K}^\bullet $, see Lemma 21.18.2. By Lemma 21.18.1 the complex $g^*\mathcal{K}^\bullet $ is K-flat with flat terms. Hence $Lf^*Lg^*E$ is represented by $f^*g^*\mathcal{K}^\bullet $. Since also $L(g \circ f)^*E$ is represented by $(g \circ f)^*\mathcal{K}^\bullet = f^*g^*\mathcal{K}^\bullet $ we conclude. $\square$

Lemma 21.18.4. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}')$ be a morphism of ringed topoi. There is a canonical bifunctorial isomorphism

\[ Lf^*( \mathcal{F}^\bullet \otimes _{\mathcal{O}'}^{\mathbf{L}} \mathcal{G}^\bullet ) = Lf^*\mathcal{F}^\bullet \otimes _{\mathcal{O}}^{\mathbf{L}} Lf^*\mathcal{G}^\bullet \]

for $\mathcal{F}^\bullet , \mathcal{G}^\bullet \in \mathop{\mathrm{Ob}}\nolimits (D(\mathcal{O}'))$.

Proof. By our construction of derived pullback in Lemma 21.18.2. and the existence of resolutions in Lemma 21.17.11 we may replace $\mathcal{F}^\bullet $ and $\mathcal{G}^\bullet $ by complexes of $\mathcal{O}'$-modules which are K-flat and have flat terms. In this case $\mathcal{F}^\bullet \otimes _{\mathcal{O}'}^{\mathbf{L}} \mathcal{G}^\bullet $ is just the total complex associated to the double complex $\mathcal{F}^\bullet \otimes _{\mathcal{O}'} \mathcal{G}^\bullet $. The complex $\text{Tot}(\mathcal{F}^\bullet \otimes _{\mathcal{O}'} \mathcal{G}^\bullet )$ is K-flat with flat terms by Lemma 21.17.5 and Modules on Sites, Lemma 18.28.12. Hence the isomorphism of the lemma comes from the isomorphism

\[ \text{Tot}(f^*\mathcal{F}^\bullet \otimes _{\mathcal{O}} f^*\mathcal{G}^\bullet ) \longrightarrow f^*\text{Tot}(\mathcal{F}^\bullet \otimes _{\mathcal{O}'} \mathcal{G}^\bullet ) \]

whose constituents are the isomorphisms $f^*\mathcal{F}^ p \otimes _{\mathcal{O}} f^*\mathcal{G}^ q \to f^*(\mathcal{F}^ p \otimes _{\mathcal{O}'} \mathcal{G}^ q)$ of Modules on Sites, Lemma 18.26.2. $\square$

Lemma 21.18.5. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ be a morphism of ringed topoi. There is a canonical bifunctorial isomorphism

\[ \mathcal{F}^\bullet \otimes _\mathcal {O}^{\mathbf{L}} Lf^*\mathcal{G}^\bullet = \mathcal{F}^\bullet \otimes _{f^{-1}\mathcal{O}_ Y}^{\mathbf{L}} f^{-1}\mathcal{G}^\bullet \]

for $\mathcal{F}^\bullet $ in $D(\mathcal{O})$ and $\mathcal{G}^\bullet $ in $D(\mathcal{O}')$.

Proof. Let $\mathcal{F}$ be an $\mathcal{O}$-module and let $\mathcal{G}$ be an $\mathcal{O}'$-module. Then $\mathcal{F} \otimes _{\mathcal{O}} f^*\mathcal{G} = \mathcal{F} \otimes _{f^{-1}\mathcal{O}'} f^{-1}\mathcal{G}$ because $f^*\mathcal{G} = \mathcal{O} \otimes _{f^{-1}\mathcal{O}'} f^{-1}\mathcal{G}$. The lemma follows from this and the definitions. $\square$

Lemma 21.18.6. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{K}^\bullet $ be a complex of $\mathcal{O}$-modules.

  1. If $\mathcal{K}^\bullet $ is K-flat, then for every point $p$ of the site $\mathcal{C}$ the complex of $\mathcal{O}_ p$-modules $\mathcal{K}_ p^\bullet $ is K-flat in the sense of More on Algebra, Definition 15.59.1

  2. If $\mathcal{C}$ has enough points, then the converse is true.

Proof. Proof of (2). If $\mathcal{C}$ has enough points and $\mathcal{K}_ p^\bullet $ is K-flat for all points $p$ of $\mathcal{C}$ then we see that $\mathcal{K}^\bullet $ is K-flat because $\otimes $ and direct sums commute with taking stalks and because we can check exactness at stalks, see Modules on Sites, Lemma 18.14.4.

Proof of (1). Assume $\mathcal{K}^\bullet $ is K-flat. Choose a quasi-isomorphism $a : \mathcal{L}^\bullet \to \mathcal{K}^\bullet $ such that $\mathcal{L}^\bullet $ is K-flat with flat terms, see Lemma 21.17.11. Any pullback of $\mathcal{L}^\bullet $ is K-flat, see Lemma 21.18.1. In particular the stalk $\mathcal{L}_ p^\bullet $ is a K-flat complex of $\mathcal{O}_ p$-modules. Thus the cone $C(a)$ on $a$ is a K-flat (Lemma 21.17.6) acyclic complex of $\mathcal{O}$-modules and it suffuces to show the stalk of $C(a)$ is K-flat (by More on Algebra, Lemma 15.59.5). Thus we may assume that $\mathcal{K}^\bullet $ is K-flat and acyclic.

Assume $\mathcal{K}^\bullet $ is acyclic and K-flat. Before continuing we replace the site $\mathcal{C}$ by another one as in Sites, Lemma 7.29.5 to insure that $\mathcal{C}$ has all finite limits. This implies the category of neighbourhoods of $p$ is filtered (Sites, Lemma 7.33.2) and the colimit defining the stalk of a sheaf is filtered. Let $M$ be a finitely presented $\mathcal{O}_ p$-module. It suffices to show that $\mathcal{K}^\bullet \otimes _{\mathcal{O}_ p} M$ is acyclic, see More on Algebra, Lemma 15.59.9. Since $\mathcal{O}_ p$ is the filtered colimit of $\mathcal{O}(U)$ where $U$ runs over the neighbourhoods of $p$, we can find a neighbourhood $(U, x)$ of $p$ and a finitely presented $\mathcal{O}(U)$-module $M'$ whose base change to $\mathcal{O}_ p$ is $M$, see Algebra, Lemma 10.127.6. By Lemma 21.17.4 we may replace $\mathcal{C}, \mathcal{O}, \mathcal{K}^\bullet $ by $\mathcal{C}/U, \mathcal{O}_ U, \mathcal{K}^\bullet |_ U$. We conclude that we may assume there exists an $\mathcal{O}$-module $\mathcal{F}$ such that $M \cong \mathcal{F}_ p$. Since $\mathcal{K}^\bullet $ is K-flat and acyclic, we see that $\mathcal{K}^\bullet \otimes _\mathcal {O} \mathcal{F}$ is acyclic (as it computes the derived tensor product by definition). Taking stalks is an exact functor, hence we get that $\mathcal{K}^\bullet \otimes _{\mathcal{O}_ p} M$ is acyclic as desired. $\square$

Lemma 21.18.7. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ be a morphism of ringed topoi. If $\mathcal{C}$ has enough points, then the pullback of a K-flat complex of $\mathcal{O}'$-modules is a K-flat complex of $\mathcal{O}$-modules.

Proof. This follows from Lemma 21.18.6, Modules on Sites, Lemma 18.36.4, and More on Algebra, Lemma 15.59.3. $\square$

Lemma 21.18.8. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ be a morphism of ringed topoi. Let $\mathcal{K}^\bullet $ and $\mathcal{M}^\bullet $ be complexes of $\mathcal{O}_\mathcal {D}$-modules. The diagram

\[ \xymatrix{ Lf^*(\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}}^\mathbf {L} \mathcal{M}^\bullet ) \ar[r] \ar[d] & Lf^*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}} \mathcal{M}^\bullet ) \ar[d] \\ Lf^*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}}^\mathbf {L} Lf^*\mathcal{M}^\bullet \ar[d] & f^*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}} \mathcal{M}^\bullet ) \ar[d] \\ f^*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}}^\mathbf {L} f^*\mathcal{M}^\bullet \ar[r] & \text{Tot}(f^*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}} f^*\mathcal{M}^\bullet ) } \]


Proof. We will use the existence of K-flat resolutions with flat terms (Lemma 21.17.11), we will use that derived pullback is computed by such complexes (Lemma 21.18.2), and that pullbacks preserve these properties (Lemma 21.18.1). If we choose such resolutions $\mathcal{P}^\bullet \to \mathcal{K}^\bullet $ and $\mathcal{Q}^\bullet \to \mathcal{M}^\bullet $, then we see that

\[ \xymatrix{ Lf^*\text{Tot}(\mathcal{P}^\bullet \otimes _{\mathcal{O}_\mathcal {D}} \mathcal{Q}^\bullet ) \ar[r] \ar[d] & Lf^*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}} \mathcal{M}^\bullet ) \ar[d] \\ f^*\text{Tot}(\mathcal{P}^\bullet \otimes _{\mathcal{O}_\mathcal {D}} \mathcal{Q}^\bullet ) \ar[d] \ar[r] & f^*\text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {D}} \mathcal{M}^\bullet ) \ar[d] \\ \text{Tot}(f^*\mathcal{P}^\bullet \otimes _{\mathcal{O}_\mathcal {C}} f^*\mathcal{Q}^\bullet ) \ar[r] & \text{Tot}(f^*\mathcal{K}^\bullet \otimes _{\mathcal{O}_\mathcal {C}} f^*\mathcal{M}^\bullet ) } \]

commutes. However, now the left hand side of the diagram is the left hand side of the diagram by our choice of $\mathcal{P}^\bullet $ and $\mathcal{Q}^\bullet $ and Lemma 21.17.5. $\square$

Comments (2)

Comment #5834 by Haodong Yao on

type in the proof of Lemma 06YW, should be

Comment #5850 by on

Your comment is no longer relevant. Note to everybody: this is an example of it being confusing to leave a comment on a lemma on the page corresponding to the section. The lemma still exists (and is still a valid mathematical result) but was moved to the obsolete chapter, see Lemma 114.8.1.

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06YV. Beware of the difference between the letter 'O' and the digit '0'.