The Stacks project

Lemma 18.36.4. Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ be a morphism of ringed topoi or ringed sites. Let $p$ be a point of $\mathcal{C}$ or $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ and set $q = f \circ p$. Then

\[ (f^*\mathcal{F})_ p = \mathcal{F}_ q \otimes _{\mathcal{O}_{\mathcal{D}, q}} \mathcal{O}_{\mathcal{C}, p} \]

for any $\mathcal{O}_\mathcal {D}$-module $\mathcal{F}$.

Proof. We have

\[ f^*\mathcal{F} = f^{-1}\mathcal{F} \otimes _{f^{-1}\mathcal{O}_\mathcal {D}} \mathcal{O}_\mathcal {C} \]

by definition. Since taking stalks at $p$ (i.e., applying $p^{-1}$) commutes with $\otimes $ by Lemma 18.26.2 we win by the relation between the stalk of pullbacks at $p$ and stalks at $q$ explained in Sites, Lemma 7.34.2 or Sites, Lemma 7.34.3. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 18.36: Stalks of modules

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05V5. Beware of the difference between the letter 'O' and the digit '0'.