Lemma 18.35.3. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $p$ be a point of $\mathcal{C}$.

The functor $\textit{Mod}(\mathcal{O}) \to \textit{Mod}(\mathcal{O}_ p)$, $\mathcal{F} \mapsto \mathcal{F}_ p$ is exact.

The stalk functor $\textit{PMod}(\mathcal{O}) \to \textit{Mod}(\mathcal{O}_ p)$, $\mathcal{F} \mapsto \mathcal{F}_ p$ is exact.

For $\mathcal{F} \in \mathop{\mathrm{Ob}}\nolimits (\textit{PMod}(\mathcal{O}))$ we have $\mathcal{F}_ p = \mathcal{F}^\# _ p$.

## Comments (0)

There are also: