Lemma 21.18.3. Consider morphisms of ringed topoi $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ and $g : (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{E}), \mathcal{O}_\mathcal {E})$. Then $Lf^* \circ Lg^* = L(g \circ f)^*$ as functors $D(\mathcal{O}_\mathcal {E}) \to D(\mathcal{O}_\mathcal {C})$.

**Proof.**
Let $E$ be an object of $D(\mathcal{O}_\mathcal {E})$. By construction $Lg^*E$ is computed by choosing a complex $\mathcal{K}^\bullet $ as in Lemma 21.18.1 representing $E$ and setting $Lg^*E = g^*\mathcal{K}^\bullet $. By transitivity of pullback functors the complex $g^*\mathcal{K}^\bullet $ pulled back by any morphism of ringed topoi $(\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}') \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ is K-flat. Hence $g^*\mathcal{K}^\bullet $ is a complex as in Lemma 21.18.1 representing $Lg^*E$. We conclude $Lf^*Lg^*E$ is given by $f^*g^*\mathcal{K}^\bullet = (g \circ f)^*\mathcal{K}^\bullet $ which also represents $L(g \circ f)^*E$.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)