Lemma 15.59.9. Let $R$ be a ring. Let $K^\bullet $ be a complex of $R$-modules. If $K^\bullet \otimes _ R M$ is acyclic for all finitely presented $R$-modules $M$, then $K^\bullet $ is K-flat.
Proof. We will use repeatedly that tensor product commute with colimits (Algebra, Lemma 10.12.9). Thus we see that $K^\bullet \otimes _ R M$ is acyclic for any $R$-module $M$, because any $R$-module is a filtered colimit of finitely presented $R$-modules $M$, see Algebra, Lemma 10.11.3. Let $M^\bullet $ be an acyclic complex of $R$-modules. We have to show that $\text{Tot}(M^\bullet \otimes _ R K^\bullet )$ is acyclic. Since $M^\bullet = \mathop{\mathrm{colim}}\nolimits \tau _{\leq n} M^\bullet $ (termwise colimit) we have
with truncations as in Homology, Section 12.15. As filtered colimits are exact (Algebra, Lemma 10.8.8) we may replace $M^\bullet $ by $\tau _{\leq n}M^\bullet $ and assume that $M^\bullet $ is bounded above. In the bounded above case, we can write $M^\bullet = \mathop{\mathrm{colim}}\nolimits \sigma _{\geq -n} M^\bullet $ where the complexes $\sigma _{\geq -n} M^\bullet $ are bounded but possibly no longer acyclic. Arguing as above we reduce to the case where $M^\bullet $ is a bounded complex. Finally, for a bounded complex $M^ a \to \ldots \to M^ b$ we can argue by induction on the length $b - a$ of the complex. The case $b - a = 1$ we have seen above. For $b - a > 1$ we consider the split short exact sequence of complexes
and we apply Lemma 15.58.4 to do the induction step. Some details omitted. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: