12.15 Truncation of complexes
Let $\mathcal{A}$ be an abelian category. Let $A_\bullet $ be a chain complex. There are several ways to truncate the complex $A_\bullet $.
The “stupid” truncation $\sigma _{\leq n}$ is the subcomplex $\sigma _{\leq n} A_\bullet $ defined by the rule $(\sigma _{\leq n} A_\bullet )_ i = 0$ if $i > n$ and $(\sigma _{\leq n} A_\bullet )_ i = A_ i$ if $i \leq n$. In a picture
\[ \xymatrix{ \sigma _{\leq n}A_\bullet \ar[d] & \ldots \ar[r] & 0 \ar[r] \ar[d] & A_ n \ar[r] \ar[d] & A_{n - 1} \ar[r] \ar[d] & \ldots \\ A_\bullet & \ldots \ar[r] & A_{n + 1} \ar[r] & A_ n \ar[r] & A_{n - 1} \ar[r] & \ldots } \]Note the property $\sigma _{\leq n}A_\bullet / \sigma _{\leq n - 1}A_\bullet = A_ n[-n]$.
The “stupid” truncation $\sigma _{\geq n}$ is the quotient complex $\sigma _{\geq n} A_\bullet $ defined by the rule $(\sigma _{\geq n} A_\bullet )_ i = A_ i$ if $i \geq n$ and $(\sigma _{\geq n} A_\bullet )_ i = 0$ if $i < n$. In a picture
\[ \xymatrix{ A_\bullet \ar[d] & \ldots \ar[r] & A_{n + 1} \ar[r] \ar[d] & A_ n \ar[r] \ar[d] & A_{n - 1} \ar[r] \ar[d] & \ldots \\ \sigma _{\geq n}A_\bullet & \ldots \ar[r] & A_{n + 1} \ar[r] & A_ n \ar[r] & 0 \ar[r] & \ldots } \]The map of complexes $\sigma _{\geq n}A_\bullet \to \sigma _{\geq n + 1}A_\bullet $ is surjective with kernel $A_ n[-n]$.
The canonical truncation $\tau _{\geq n}A_\bullet $ is defined by the picture
\[ \xymatrix{ \tau _{\geq n}A_\bullet \ar[d] & \ldots \ar[r] & A_{n + 1} \ar[r] \ar[d] & \mathop{\mathrm{Ker}}(d_ n) \ar[r] \ar[d] & 0 \ar[r] \ar[d] & \ldots \\ A_\bullet & \ldots \ar[r] & A_{n + 1} \ar[r] & A_ n \ar[r] & A_{n - 1} \ar[r] & \ldots } \]Note that these complexes have the property that
\[ H_ i(\tau _{\geq n}A_\bullet ) = \left\{ \begin{matrix} H_ i(A_\bullet ) & \text{if} & i \geq n \\ 0 & \text{if} & i < n \end{matrix} \right. \]The canonical truncation $\tau _{\leq n}A_\bullet $ is defined by the picture
\[ \xymatrix{ A_\bullet \ar[d] & \ldots \ar[r] & A_{n + 1} \ar[r] \ar[d] & A_ n \ar[r] \ar[d] & A_{n - 1} \ar[r] \ar[d] & \ldots \\ \tau _{\leq n}A_\bullet & \ldots \ar[r] & 0 \ar[r] & \mathop{\mathrm{Coker}}(d_{n + 1}) \ar[r] & A_{n - 1} \ar[r] & \ldots } \]Note that these complexes have the property that
\[ H_ i(\tau _{\leq n}A_\bullet ) = \left\{ \begin{matrix} H_ i(A_\bullet ) & \text{if} & i \leq n \\ 0 & \text{if} & i > n \end{matrix} \right. \]
Let $\mathcal{A}$ be an abelian category. Let $A^\bullet $ be a cochain complex. There are four ways to truncate the complex $A^\bullet $.
The “stupid” truncation $\sigma _{\geq n}$ is the subcomplex $\sigma _{\geq n} A^\bullet $ defined by the rule $(\sigma _{\geq n} A^\bullet )^ i = 0$ if $i < n$ and $(\sigma _{\geq n} A^\bullet )^ i = A_ i$ if $i \geq n$. In a picture
\[ \xymatrix{ \sigma _{\geq n}A^\bullet \ar[d] & \ldots \ar[r] & 0 \ar[r] \ar[d] & A^ n \ar[r] \ar[d] & A^{n + 1} \ar[r] \ar[d] & \ldots \\ A^\bullet & \ldots \ar[r] & A^{n - 1} \ar[r] & A^ n \ar[r] & A^{n + 1} \ar[r] & \ldots } \]Note the property $\sigma _{\geq n}A^\bullet / \sigma _{\geq n + 1}A^\bullet = A^ n[-n]$.
The “stupid” truncation $\sigma _{\leq n}$ is the quotient complex $\sigma _{\leq n} A^\bullet $ defined by the rule $(\sigma _{\leq n} A^\bullet )^ i = 0$ if $i > n$ and $(\sigma _{\leq n} A^\bullet )^ i = A^ i$ if $i \leq n$. In a picture
\[ \xymatrix{ A^\bullet \ar[d] & \ldots \ar[r] & A^{n - 1} \ar[r] \ar[d] & A^ n \ar[r] \ar[d] & A^{n + 1} \ar[r] \ar[d] & \ldots \\ \sigma _{\leq n}A^\bullet & \ldots \ar[r] & A^{n - 1} \ar[r] & A^ n \ar[r] & 0 \ar[r] & \ldots \\ } \]The map of complexes $\sigma _{\leq n}A^\bullet \to \sigma _{\leq n - 1}A^\bullet $ is surjective with kernel $A^ n[-n]$.
The canonical truncation $\tau _{\leq n}A^\bullet $ is defined by the picture
\[ \xymatrix{ \tau _{\leq n}A^\bullet \ar[d] & \ldots \ar[r] & A^{n - 1} \ar[r] \ar[d] & \mathop{\mathrm{Ker}}(d^ n) \ar[r] \ar[d] & 0 \ar[r] \ar[d] & \ldots \\ A^\bullet & \ldots \ar[r] & A^{n - 1} \ar[r] & A^ n \ar[r] & A^{n + 1} \ar[r] & \ldots } \]Note that these complexes have the property that
\[ H^ i(\tau _{\leq n}A^\bullet ) = \left\{ \begin{matrix} H^ i(A^\bullet ) & \text{if} & i \leq n \\ 0 & \text{if} & i > n \end{matrix} \right. \]The canonical truncation $\tau _{\geq n}A^\bullet $ is defined by the picture
\[ \xymatrix{ A^\bullet \ar[d] & \ldots \ar[r] & A^{n - 1} \ar[r] \ar[d] & A^ n \ar[r] \ar[d] & A^{n + 1} \ar[r] \ar[d] & \ldots \\ \tau _{\geq n}A^\bullet & \ldots \ar[r] & 0 \ar[r] & \mathop{\mathrm{Coker}}(d^{n - 1}) \ar[r] & A^{n + 1} \ar[r] & \ldots } \]Note that these complexes have the property that
\[ H^ i(\tau _{\geq n}A^\bullet ) = \left\{ \begin{matrix} 0 & \text{if} & i < n \\ H^ i(A^\bullet ) & \text{if} & i \geq n \end{matrix} \right. \]
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (7)
Comment #6828 by Seongsu Jeon on
Comment #6969 by Johan on
Comment #6989 by Seongsu Jeon on
Comment #6990 by Johan on
Comment #7861 by Sándor on
Comment #8079 by Stacks Project on
Comment #8194 by Sándor on