Lemma 10.12.9 (Tensor products commute with colimits). Let (M_ i, \mu _{ij}) be a system over the preordered set I. Let N be an R-module. Then
\mathop{\mathrm{colim}}\nolimits (M_ i \otimes N) \cong (\mathop{\mathrm{colim}}\nolimits M_ i)\otimes N.
Moreover, the isomorphism is induced by the homomorphisms \mu _ i \otimes 1: M_ i \otimes N \to M \otimes N where M = \mathop{\mathrm{colim}}\nolimits _ i M_ i with natural maps \mu _ i : M_ i \to M.
Proof.
First proof. The functor M' \mapsto M' \otimes _ R N is left adjoint to the functor N' \mapsto \mathop{\mathrm{Hom}}\nolimits _ R(N, N') by Lemma 10.12.8. Thus M' \mapsto M' \otimes _ R N commutes with all colimits, see Categories, Lemma 4.24.5.
Second direct proof. Let P = \mathop{\mathrm{colim}}\nolimits (M_ i \otimes N) with coprojections \lambda _ i : M_ i \otimes N \to P. Let M = \mathop{\mathrm{colim}}\nolimits M_ i with coprojections \mu _ i : M_ i \to M. Then for all i\leq j, the following diagram commutes:
\xymatrix{ M_ i \otimes N \ar[r]_{\mu _ i \otimes 1} \ar[d]_{\mu _{ij} \otimes 1} & M \otimes N \ar[d]^{\text{id}} \\ M_ j \otimes N \ar[r]^{\mu _ j \otimes 1} & M \otimes N }
By Lemma 10.8.7 these maps induce a unique homomorphism \psi : P \to M \otimes N such that \mu _ i \otimes 1 = \psi \circ \lambda _ i.
To construct the inverse map, for each i\in I, there is the canonical R-bilinear mapping g_ i : M_ i \times N \to M_ i \otimes N. This induces a unique mapping \widehat{\phi } : M \times N \to P such that \widehat{\phi } \circ (\mu _ i \times 1) = \lambda _ i \circ g_ i. It is R-bilinear. Thus it induces an R-linear mapping \phi : M \otimes N \to P. From the commutative diagram below:
\xymatrix{ M_ i \times N \ar[r]^{g_ i} \ar[d]^{\mu _ i \times \text{id}} & M_ i \otimes N\ar[r]_{\text{id}} \ar[d]_{\lambda _ i} & M_ i \otimes N \ar[d]_{\mu _ i \otimes \text{id}} \ar[rd]^{\lambda _ i} \\ M \times N \ar[r]^{\widehat{\phi }} & P \ar[r]^{\psi } & M \otimes N \ar[r]^{\phi } & P }
we see that \psi \circ \widehat{\phi } = g, the canonical R-bilinear mapping g : M \times N \to M \otimes N. So \psi \circ \phi is identity on M \otimes N. From the right-hand square and triangle, \phi \circ \psi is also identity on P.
\square
Comments (7)
Comment #394 by Fan on
Comment #395 by Fan on
Comment #399 by Johan on
Comment #5989 by Shota Inoue on
Comment #6160 by Johan on
Comment #7380 by T.C. on
Comment #7579 by Stacks Project on
There are also: