The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

21.20 Cohomology of unbounded complexes

Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. The category $\textit{Mod}(\mathcal{O})$ is a Grothendieck abelian category: it has all colimits, filtered colimits are exact, and it has a generator, namely

\[ \bigoplus \nolimits _{U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})} j_{U!}\mathcal{O}_ U, \]

see Modules on Sites, Section 18.14 and Lemmas 18.28.6 and 18.28.7. By Injectives, Theorem 19.12.6 for every complex $\mathcal{F}^\bullet $ of $\mathcal{O}$-modules there exists an injective quasi-isomorphism $\mathcal{F}^\bullet \to \mathcal{I}^\bullet $ to a K-injective complex of $\mathcal{O}$-modules. Hence we can define

\[ R\Gamma (\mathcal{C}, \mathcal{F}^\bullet ) = \Gamma (\mathcal{C}, \mathcal{I}^\bullet ) \]

and similarly for any left exact functor, see Derived Categories, Lemma 13.29.7. For any morphism of ringed topoi $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}')$ we obtain

\[ Rf_* : D(\mathcal{O}) \longrightarrow D(\mathcal{O}') \]

on the unbounded derived categories.

Lemma 21.20.1. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}')$ be a morphism of ringed topoi. The functor $Rf_*$ defined above and the functor $Lf^*$ defined in Lemma 21.19.2 are adjoint:

\[ \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O})}(Lf^*\mathcal{G}^\bullet , \mathcal{F}^\bullet ) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}')}(\mathcal{G}^\bullet , Rf_*\mathcal{F}^\bullet ) \]

bifunctorially in $\mathcal{F}^\bullet \in \mathop{\mathrm{Ob}}\nolimits (D(\mathcal{O}))$ and $\mathcal{G}^\bullet \in \mathop{\mathrm{Ob}}\nolimits (D(\mathcal{O}'))$.

Proof. This follows formally from the fact that $Rf_*$ and $Lf^*$ exist, see Derived Categories, Lemma 13.28.5. $\square$

Lemma 21.20.2. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ and $g : (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{E}), \mathcal{O}_\mathcal {E})$ be morphisms of ringed topoi. Then $Rg_* \circ Rf_* = R(g \circ f)_*$ as functors $D(\mathcal{O}_\mathcal {C}) \to D(\mathcal{O}_\mathcal {E})$.

Proof. By Lemma 21.20.1 we see that $Rg_* \circ Rf_*$ is adjoint to $Lf^* \circ Lg^*$. We have $Lf^* \circ Lg^* = L(g \circ f)^*$ by Lemma 21.19.3 and hence by uniqueness of adjoint functors we have $Rg_* \circ Rf_* = R(g \circ f)_*$. $\square$

Remark 21.20.3. The construction of unbounded derived functor $Lf^*$ and $Rf_*$ allows one to construct the base change map in full generality. Namely, suppose that

\[ \xymatrix{ (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}_{\mathcal{C}'}) \ar[r]_{g'} \ar[d]_{f'} & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \ar[d]^ f \\ (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}'), \mathcal{O}_{\mathcal{D}'}) \ar[r]^ g & (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) } \]

is a commutative diagram of ringed topoi. Let $K$ be an object of $D(\mathcal{O}_\mathcal {C})$. Then there exists a canonical base change map

\[ Lg^*Rf_*K \longrightarrow R(f')_*L(g')^*K \]

in $D(\mathcal{O}_{\mathcal{D}'})$. Namely, this map is adjoint to a map $L(f')^*Lg^*Rf_*K \to L(g')^*K$. Since $L(f')^* \circ Lg^* = L(g')^* \circ Lf^*$ we see this is the same as a map $L(g')^*Lf^*Rf_*K \to L(g')^*K$ which we can take to be $L(g')^*$ of the adjunction map $Lf^*Rf_*K \to K$.

Remark 21.20.4. Consider a commutative diagram

\[ \xymatrix{ (\mathop{\mathit{Sh}}\nolimits (\mathcal{B}'), \mathcal{O}_{\mathcal{B}'}) \ar[r]_ k \ar[d]_{f'} & (\mathop{\mathit{Sh}}\nolimits (\mathcal{B}), \mathcal{O}_\mathcal {B}) \ar[d]^ f \\ (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}_{\mathcal{C}'}) \ar[r]^ l \ar[d]_{g'} & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \ar[d]^ g \\ (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}'), \mathcal{O}_{\mathcal{D}'}) \ar[r]^ m & (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) \\ } \]

of ringed topoi. Then the base change maps of Remark 21.20.3 for the two squares compose to give the base change map for the outer rectangle. More precisely, the composition

\begin{align*} Lm^* \circ R(g \circ f)_* & = Lm^* \circ Rg_* \circ Rf_* \\ & \to Rg'_* \circ Ll^* \circ Rf_* \\ & \to Rg'_* \circ Rf'_* \circ Lk^* \\ & = R(g' \circ f')_* \circ Lk^* \end{align*}

is the base change map for the rectangle. We omit the verification.

Remark 21.20.5. Consider a commutative diagram

\[ \xymatrix{ (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}''), \mathcal{O}_{\mathcal{C}''}) \ar[r]_{g'} \ar[d]_{f''} & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}_{\mathcal{C}'}) \ar[r]_ g \ar[d]_{f'} & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \ar[d]^ f \\ (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}''), \mathcal{O}_{\mathcal{D}''}) \ar[r]^{h'} & (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}'), \mathcal{O}_{\mathcal{D}'}) \ar[r]^ h & (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) } \]

of ringed tpoi. Then the base change maps of Remark 21.20.3 for the two squares compose to give the base change map for the outer rectangle. More precisely, the composition

\begin{align*} L(h \circ h')^* \circ Rf_* & = L(h')^* \circ Lh_* \circ Rf_* \\ & \to L(h')^* \circ Rf'_* \circ Lg^* \\ & \to Rf''_* \circ L(g')^* \circ Lg^* \\ & = Rf”_* \circ L(g \circ g')^* \end{align*}

is the base change map for the rectangle. We omit the verification.

Remark 21.20.6. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ be a morphism of ringed topoi. The adjointness of $Lf^*$ and $Rf_*$ allows us to construct a relative cup product

\[ Rf_*K \otimes _{\mathcal{O}_\mathcal {D}}^\mathbf {L} Rf_*L \longrightarrow Rf_*(K \otimes _{\mathcal{O}_\mathcal {C}}^\mathbf {L} L) \]

in $D(\mathcal{O}_\mathcal {D})$ for all $K, L$ in $D(\mathcal{O}_\mathcal {C})$. Namely, this map is adjoint to a map $Lf^*(Rf_*K \otimes _{\mathcal{O}_\mathcal {D}}^\mathbf {L} Rf_*L) \to K \otimes _{\mathcal{O}_\mathcal {C}}^\mathbf {L} L$ for which we can take the composition of the isomorphism $Lf^*(Rf_*K \otimes _{\mathcal{O}_\mathcal {D}}^\mathbf {L} Rf_*L) = Lf^*Rf_*K \otimes _{\mathcal{O}_\mathcal {C}}^\mathbf {L} Lf^*Rf_*L$ (Lemma 21.19.4) with the map $Lf^*Rf_*K \otimes _{\mathcal{O}_\mathcal {C}}^\mathbf {L} Lf^*Rf_*L \to K \otimes _{\mathcal{O}_\mathcal {C}}^\mathbf {L} L$ coming from the counit $Lf^* \circ Rf_* \to \text{id}$.

Lemma 21.20.7. Let $\mathcal{C}$ be a site. Let $\mathcal{A} \subset \textit{Ab}(\mathcal{C})$ denote the Serre subcategory consisting of torsion abelian sheaves. Then the functor $D(\mathcal{A}) \to D_\mathcal {A}(\mathcal{C})$ is an equivalence.

Proof. A key observation is that an injective abelian sheaf $\mathcal{I}$ is divisible. Namely, if $s \in \mathcal{I}(U)$ is a local section, then we interpret $s$ as a map $s : j_{U!}\mathbf{Z} \to \mathcal{I}$ and we apply the defining property of an injective object to the injective map of sheaves $n : j_{U!}\mathbf{Z} \to j_{U!}\mathbf{Z}$ to see that there exists an $s' \in \mathcal{I}(U)$ with $ns' = s$.

For a sheaf $\mathcal{F}$ denote $\mathcal{F}_{tor}$ its torsion subsheaf. We claim that if $\mathcal{I}^\bullet $ is a complex of injective abelian sheaves whose cohomology sheaves are torsion, then

\[ \mathcal{I}^\bullet _{tor} \to \mathcal{I}^\bullet \]

is a quasi-isomorphism. Namely, by flatness of $\mathbf{Q}$ over $\mathbf{Z}$ we have

\[ H^ p(\mathcal{I}^\bullet ) \otimes _\mathbf {Z} \mathbf{Q} = H^ p(\mathcal{I}^\bullet \otimes _\mathbf {Z} \mathbf{Q}) \]

which is zero because the cohomology sheaves are torsion. By divisibility (shown above) we see that $\mathcal{I}^\bullet \to \mathcal{I}^\bullet \otimes _\mathbf {Z} \mathbf{Q}$ is surjective with kernel $\mathcal{I}^\bullet _{tor}$. The claim follows from the long exact sequence of cohomology sheaves associated to the short exact sequence you get.

To prove the lemma we will construct right adjoint $T : D(\mathcal{C}) \to D(\mathcal{A})$. Namely, given $K$ in $D(\mathcal{C})$ we can represent $K$ by a K-injective complex $\mathcal{I}^\bullet $ whose cohomology sheaves are injective, see Injectives, Theorem 19.12.6. Then we set $T(K) = \mathcal{I}^\bullet _{tor}$, in other words, $T$ is the right derived functor of taking torsion. The functor $T$ is a right adjoint to $i : D(\mathcal{A}) \to D_\mathcal {A}(\mathcal{C})$. This readily follows from the observation that if $\mathcal{F}^\bullet $ is a complex of torsion sheaves, then

\[ \mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{A})}(\mathcal{F}^\bullet , I^\bullet _{tor}) = \mathop{\mathrm{Hom}}\nolimits _{K(\textit{Ab}(\mathcal{C}))}(\mathcal{F}^\bullet , I^\bullet ) \]

in particular $\mathcal{I}^\bullet _{tor}$ is a K-injective complex of $\mathcal{A}$. Some details omitted; in case of doubt, it also follows from the more general Derived Categories, Lemma 13.28.5. Our claim above gives that $L = T(i(L))$ for $L$ in $D(\mathcal{A})$ and $i(T(K)) = K$ if $K$ is in $D_\mathcal {A}(\mathcal{C})$. Using Categories, Lemma 4.24.3 the result follows. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07A5. Beware of the difference between the letter 'O' and the digit '0'.