Processing math: 0%

The Stacks project

Remark 21.19.7. Let f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) be a morphism of ringed topoi. The adjointness of Lf^* and Rf_* allows us to construct a relative cup product

Rf_*K \otimes _{\mathcal{O}_\mathcal {D}}^\mathbf {L} Rf_*L \longrightarrow Rf_*(K \otimes _{\mathcal{O}_\mathcal {C}}^\mathbf {L} L)

in D(\mathcal{O}_\mathcal {D}) for all K, L in D(\mathcal{O}_\mathcal {C}). Namely, this map is adjoint to a map Lf^*(Rf_*K \otimes _{\mathcal{O}_\mathcal {D}}^\mathbf {L} Rf_*L) \to K \otimes _{\mathcal{O}_\mathcal {C}}^\mathbf {L} L for which we can take the composition of the isomorphism Lf^*(Rf_*K \otimes _{\mathcal{O}_\mathcal {D}}^\mathbf {L} Rf_*L) = Lf^*Rf_*K \otimes _{\mathcal{O}_\mathcal {C}}^\mathbf {L} Lf^*Rf_*L (Lemma 21.18.4) with the map Lf^*Rf_*K \otimes _{\mathcal{O}_\mathcal {C}}^\mathbf {L} Lf^*Rf_*L \to K \otimes _{\mathcal{O}_\mathcal {C}}^\mathbf {L} L coming from the counit Lf^* \circ Rf_* \to \text{id}.


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.