Remark 21.19.5. Consider a commutative diagram

$\xymatrix{ (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}''), \mathcal{O}_{\mathcal{C}''}) \ar[r]_{g'} \ar[d]_{f''} & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}_{\mathcal{C}'}) \ar[r]_ g \ar[d]_{f'} & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \ar[d]^ f \\ (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}''), \mathcal{O}_{\mathcal{D}''}) \ar[r]^{h'} & (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}'), \mathcal{O}_{\mathcal{D}'}) \ar[r]^ h & (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) }$

of ringed topoi. Then the base change maps of Remark 21.19.3 for the two squares compose to give the base change map for the outer rectangle. More precisely, the composition

\begin{align*} L(h \circ h')^* \circ Rf_* & = L(h')^* \circ Lh^* \circ Rf_* \\ & \to L(h')^* \circ Rf'_* \circ Lg^* \\ & \to Rf''_* \circ L(g')^* \circ Lg^* \\ & = Rf”_* \circ L(g \circ g')^* \end{align*}

is the base change map for the rectangle. We omit the verification.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).