Processing math: 100%

The Stacks project

Lemma 21.18.5. Let f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}') be a morphism of ringed topoi. There is a canonical bifunctorial isomorphism

\mathcal{F}^\bullet \otimes _\mathcal {O}^{\mathbf{L}} Lf^*\mathcal{G}^\bullet = \mathcal{F}^\bullet \otimes _{f^{-1}\mathcal{O}_ Y}^{\mathbf{L}} f^{-1}\mathcal{G}^\bullet

for \mathcal{F}^\bullet in D(\mathcal{O}) and \mathcal{G}^\bullet in D(\mathcal{O}').

Proof. Let \mathcal{F} be an \mathcal{O}-module and let \mathcal{G} be an \mathcal{O}'-module. Then \mathcal{F} \otimes _{\mathcal{O}} f^*\mathcal{G} = \mathcal{F} \otimes _{f^{-1}\mathcal{O}'} f^{-1}\mathcal{G} because f^*\mathcal{G} = \mathcal{O} \otimes _{f^{-1}\mathcal{O}'} f^{-1}\mathcal{G}. The lemma follows from this and the definitions. \square


Comments (1)

Comment #9814 by Amos Elsworthy on

Small typo in the statement of the lemma: the derived tensor product on the right side should be over , not .

There are also:

  • 2 comment(s) on Section 21.18: Derived pullback

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.