Lemma 21.18.5. Let f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}') be a morphism of ringed topoi. There is a canonical bifunctorial isomorphism
\mathcal{F}^\bullet \otimes _\mathcal {O}^{\mathbf{L}} Lf^*\mathcal{G}^\bullet = \mathcal{F}^\bullet \otimes _{f^{-1}\mathcal{O}_ Y}^{\mathbf{L}} f^{-1}\mathcal{G}^\bullet
for \mathcal{F}^\bullet in D(\mathcal{O}) and \mathcal{G}^\bullet in D(\mathcal{O}').
Proof.
Let \mathcal{F} be an \mathcal{O}-module and let \mathcal{G} be an \mathcal{O}'-module. Then \mathcal{F} \otimes _{\mathcal{O}} f^*\mathcal{G} = \mathcal{F} \otimes _{f^{-1}\mathcal{O}'} f^{-1}\mathcal{G} because f^*\mathcal{G} = \mathcal{O} \otimes _{f^{-1}\mathcal{O}'} f^{-1}\mathcal{G}. The lemma follows from this and the definitions.
\square
Comments (1)
Comment #9814 by Amos Elsworthy on
There are also: