## Tag `05T7`

Chapter 13: Derived Categories > Section 13.16: Derived functors on derived categories

Lemma 13.16.5. Let $\mathcal{A}$ be an abelian category. Let $\mathcal{P} \subset \mathop{\rm Ob}\nolimits(\mathcal{A})$ be a subset containing $0$ such that every object of $\mathcal{A}$ is a quotient of an element of $\mathcal{P}$. Let $a \in \mathbf{Z}$.

- Given $K^\bullet$ with $K^n = 0$ for $n > a$ there exists a quasi-isomorphism $P^\bullet \to K^\bullet$ with $P^n \in \mathcal{P}$ and $P^n \to K^n$ surjective for all $n$ and $P^n = 0$ for $n > a$.
- Given $K^\bullet$ with $H^n(K^\bullet) = 0$ for $n > a$ there exists a quasi-isomorphism $P^\bullet \to K^\bullet$ with $P^n \in \mathcal{P}$ for all $n$ and $P^n = 0$ for $n > a$.

Proof.This lemma is dual to Lemma 13.16.4. $\square$

The code snippet corresponding to this tag is a part of the file `derived.tex` and is located in lines 5261–5276 (see updates for more information).

```
\begin{lemma}
\label{lemma-subcategory-left-resolution}
Let $\mathcal{A}$ be an abelian category. Let
$\mathcal{P} \subset \Ob(\mathcal{A})$ be a subset containing $0$
such that every object of $\mathcal{A}$ is a quotient of an element of
$\mathcal{P}$. Let $a \in \mathbf{Z}$.
\begin{enumerate}
\item Given $K^\bullet$ with $K^n = 0$ for $n > a$
there exists a quasi-isomorphism $P^\bullet \to K^\bullet$
with $P^n \in \mathcal{P}$ and $P^n \to K^n$ surjective
for all $n$ and $P^n = 0$ for $n > a$.
\item Given $K^\bullet$ with $H^n(K^\bullet) = 0$ for $n > a$
there exists a quasi-isomorphism $P^\bullet \to K^\bullet$
with $P^n \in \mathcal{P}$ for all $n$ and $P^n = 0$ for $n > a$.
\end{enumerate}
\end{lemma}
\begin{proof}
This lemma is dual to
Lemma \ref{lemma-subcategory-right-resolution}.
\end{proof}
```

## Comments (0)

## Add a comment on tag `05T7`

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

All contributions are licensed under the GNU Free Documentation License.

There are no comments yet for this tag.

There are also 5 comments on Section 13.16: Derived Categories.