The Stacks project

83.29 Groupoids and simplicial schemes

Given a groupoid in schemes we can build a simplicial scheme. It will turn out that the category of quasi-coherent sheaves on a groupoid is equivalent to the category of cartesian quasi-coherent sheaves on the associated simplicial scheme.

Lemma 83.29.1. Let $(U, R, s, t, c, e, i)$ be a groupoid scheme over $S$. There exists a simplicial scheme $X$ over $S$ with the following properties

  1. $X_0 = U$, $X_1 = R$, $X_2 = R \times _{s, U, t} R$,

  2. $s_0^0 = e : X_0 \to X_1$,

  3. $d^1_0 = s : X_1 \to X_0$, $d^1_1 = t : X_1 \to X_0$,

  4. $s_0^1 = (e \circ t, 1) : X_1 \to X_2$, $s_1^1 = (1, e \circ t) : X_1 \to X_2$,

  5. $d^2_0 = \text{pr}_1 : X_2 \to X_1$, $d^2_1 = c : X_2 \to X_1$, $d^2_2 = \text{pr}_0$, and

  6. $X = \text{cosk}_2 \text{sk}_2 X$.

For all $n$ we have $X_ n = R \times _{s, U, t} \ldots \times _{s, U, t} R$ with $n$ factors. The map $d^ n_ j : X_ n \to X_{n - 1}$ is given on functors of points by

\[ (r_1, \ldots , r_ n) \longmapsto (r_1, \ldots , c(r_ j, r_{j + 1}), \ldots , r_ n) \]

for $1 \leq j \leq n - 1$ whereas $d^ n_0(r_1, \ldots , r_ n) = (r_2, \ldots , r_ n)$ and $d^ n_ n(r_1, \ldots , r_ n) = (r_1, \ldots , r_{n - 1})$.

Proof. We only have to verify that the rules prescribed in (1), (2), (3), (4), (5) define a $2$-truncated simplicial scheme $U'$ over $S$, since then (6) allows us to set $X = \text{cosk}_2 U'$, see Simplicial, Lemma 14.19.2. Using the functor of points approach, all we have to verify is that if $(\text{Ob}, \text{Arrows}, s, t, c, e, i)$ is a groupoid, then

\[ \xymatrix{ \text{Arrows} \times _{s, \text{Ob}, t} \text{Arrows} \ar@<8ex>[d]^{\text{pr}_0} \ar@<0ex>[d]_ c \ar@<-8ex>[d]_{\text{pr}_1} \\ \text{Arrows} \ar@<4ex>[d]^ t \ar@<-4ex>[d]_ s \ar@<4ex>[u]^{1, e} \ar@<-4ex>[u]_{e, 1} \\ \text{Ob} \ar@<0ex>[u]_ e } \]

is a $2$-truncated simplicial set. We omit the details.

Finally, the description of $X_ n$ for $n > 2$ follows by induction from the description of $X_0$, $X_1$, $X_2$, and Simplicial, Remark 14.19.9 and Lemma 14.19.6. Alternately, one shows that $\text{cosk}_2$ applied to the $2$-truncated simplicial set displayed above gives a simplicial set whose $n$th term equals $\text{Arrows} \times _{s, \text{Ob}, t} \ldots \times _{s, \text{Ob}, t} \text{Arrows}$ with $n$ factors and degeneracy maps as given in the lemma. Some details omitted. $\square$

Lemma 83.29.2. Let $S$ be a scheme. Let $(U, R, s, t, c)$ be a groupoid scheme over $S$. Let $X$ be the simplicial scheme over $S$ constructed in Lemma 83.29.1. Then the category of quasi-coherent modules on $(U, R, s, t, c)$ is equivalent to the category of quasi-coherent modules on $X_{Zar}$.

In the following lemma we will use the concept of a cartesian morphism $V \to U$ of simplicial schemes as defined in Definition 83.27.1.

Lemma 83.29.3. Let $(U, R, s, t, c)$ be a groupoid scheme over a scheme $S$. Let $X$ be the simplicial scheme over $S$ constructed in Lemma 83.29.1. Let $(R/U)_\bullet $ be the simplicial scheme associated to $s : R \to U$, see Definition 83.27.3. There exists a cartesian morphism $t_\bullet : (R/U)_\bullet \to X$ of simplicial schemes with low degree morphisms given by

\[ \xymatrix{ R \times _{s, U, s} R \times _{s, U, s} R \ar@<3ex>[r]_-{\text{pr}_{12}} \ar@<0ex>[r]_-{\text{pr}_{02}} \ar@<-3ex>[r]_-{\text{pr}_{01}} \ar[dd]_{(r_0, r_1, r_2) \mapsto (r_0 \circ r_1^{-1}, r_1 \circ r_2^{-1})} & R \times _{s, U, s} R \ar@<1ex>[r]_-{\text{pr}_1} \ar@<-2ex>[r]_-{\text{pr}_0} \ar[dd]_{(r_0, r_1) \mapsto r_0 \circ r_1^{-1}} & R \ar[dd]^ t \\ \\ R \times _{s, U, t} R \ar@<3ex>[r]_{\text{pr}_1} \ar@<0ex>[r]_ c \ar@<-3ex>[r]_{\text{pr}_0} & R \ar@<1ex>[r]_ s \ar@<-2ex>[r]_ t & U } \]

Proof. For arbitrary $n$ we define $(R/U)_\bullet \to X_ n$ by the rule

\[ (r_0, \ldots , r_ n) \longrightarrow (r_0 \circ r_1^{-1}, \ldots , r_{n - 1} \circ r_ n^{-1}) \]

Compatibility with degeneracy maps is clear from the description of the degeneracies in Lemma 83.29.1. We omit the verification that the maps respect the morphisms $s^ n_ j$. Groupoids, Lemma 39.13.5 (with the roles of $s$ and $t$ reversed) shows that the two right squares are cartesian. In exactly the same manner one shows all the other squares are cartesian too. Hence the morphism is cartesian. $\square$


Comments (2)

Comment #411 by on

There's a "parse error" in the last paragraph. In my browser it looks like:

parse error at or near "{\textit{QCoh}}(\mathcal{O}_U) \ar[r] "

Comment #413 by on

By a coincidence I am just editing this part, so it should be fixed in a bit.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07TM. Beware of the difference between the letter 'O' and the digit '0'.