85.29 Groupoids and simplicial schemes
Given a groupoid in schemes we can build a simplicial scheme. It will turn out that the category of quasi-coherent sheaves on a groupoid is equivalent to the category of cartesian quasi-coherent sheaves on the associated simplicial scheme.
Lemma 85.29.1. Let (U, R, s, t, c, e, i) be a groupoid scheme over S. There exists a simplicial scheme X over S with the following properties
X_0 = U, X_1 = R, X_2 = R \times _{s, U, t} R,
s_0^0 = e : X_0 \to X_1,
d^1_0 = s : X_1 \to X_0, d^1_1 = t : X_1 \to X_0,
s_0^1 = (e \circ t, 1) : X_1 \to X_2, s_1^1 = (1, e \circ t) : X_1 \to X_2,
d^2_0 = \text{pr}_1 : X_2 \to X_1, d^2_1 = c : X_2 \to X_1, d^2_2 = \text{pr}_0, and
X = \text{cosk}_2 \text{sk}_2 X.
For all n we have X_ n = R \times _{s, U, t} \ldots \times _{s, U, t} R with n factors. The map d^ n_ j : X_ n \to X_{n - 1} is given on functors of points by
(r_1, \ldots , r_ n) \longmapsto (r_1, \ldots , c(r_ j, r_{j + 1}), \ldots , r_ n)
for 1 \leq j \leq n - 1 whereas d^ n_0(r_1, \ldots , r_ n) = (r_2, \ldots , r_ n) and d^ n_ n(r_1, \ldots , r_ n) = (r_1, \ldots , r_{n - 1}).
Proof.
We only have to verify that the rules prescribed in (1), (2), (3), (4), (5) define a 2-truncated simplicial scheme U' over S, since then (6) allows us to set X = \text{cosk}_2 U', see Simplicial, Lemma 14.19.2. Using the functor of points approach, all we have to verify is that if (\text{Ob}, \text{Arrows}, s, t, c, e, i) is a groupoid, then
\xymatrix{ \text{Arrows} \times _{s, \text{Ob}, t} \text{Arrows} \ar@<8ex>[d]^{\text{pr}_0} \ar@<0ex>[d]_ c \ar@<-8ex>[d]_{\text{pr}_1} \\ \text{Arrows} \ar@<4ex>[d]^ t \ar@<-4ex>[d]_ s \ar@<4ex>[u]^{1, e} \ar@<-4ex>[u]_{e, 1} \\ \text{Ob} \ar@<0ex>[u]_ e }
is a 2-truncated simplicial set. We omit the details.
Finally, the description of X_ n for n > 2 follows by induction from the description of X_0, X_1, X_2, and Simplicial, Remark 14.19.9 and Lemma 14.19.6. Alternately, one shows that \text{cosk}_2 applied to the 2-truncated simplicial set displayed above gives a simplicial set whose nth term equals \text{Arrows} \times _{s, \text{Ob}, t} \ldots \times _{s, \text{Ob}, t} \text{Arrows} with n factors and degeneracy maps as given in the lemma. Some details omitted.
\square
Lemma 85.29.2. Let S be a scheme. Let (U, R, s, t, c) be a groupoid scheme over S. Let X be the simplicial scheme over S constructed in Lemma 85.29.1. Then the category of quasi-coherent modules on (U, R, s, t, c) is equivalent to the category of quasi-coherent modules on X_{Zar}.
Proof.
This is clear from Lemmas 85.12.10 and 85.12.5 and Groupoids, Definition 39.14.1.
\square
In the following lemma we will use the concept of a cartesian morphism V \to U of simplicial schemes as defined in Definition 85.27.1.
Lemma 85.29.3. Let (U, R, s, t, c) be a groupoid scheme over a scheme S. Let X be the simplicial scheme over S constructed in Lemma 85.29.1. Let (R/U)_\bullet be the simplicial scheme associated to s : R \to U, see Definition 85.27.3. There exists a cartesian morphism t_\bullet : (R/U)_\bullet \to X of simplicial schemes with low degree morphisms given by
\xymatrix{ R \times _{s, U, s} R \times _{s, U, s} R \ar@<3ex>[r]_-{\text{pr}_{12}} \ar@<0ex>[r]_-{\text{pr}_{02}} \ar@<-3ex>[r]_-{\text{pr}_{01}} \ar[dd]_{(r_0, r_1, r_2) \mapsto (r_0 \circ r_1^{-1}, r_1 \circ r_2^{-1})} & R \times _{s, U, s} R \ar@<1ex>[r]_-{\text{pr}_1} \ar@<-2ex>[r]_-{\text{pr}_0} \ar[dd]_{(r_0, r_1) \mapsto r_0 \circ r_1^{-1}} & R \ar[dd]^ t \\ \\ R \times _{s, U, t} R \ar@<3ex>[r]_{\text{pr}_1} \ar@<0ex>[r]_ c \ar@<-3ex>[r]_{\text{pr}_0} & R \ar@<1ex>[r]_ s \ar@<-2ex>[r]_ t & U }
Proof.
For arbitrary n we define (R/U)_\bullet \to X_ n by the rule
(r_0, \ldots , r_ n) \longrightarrow (r_0 \circ r_1^{-1}, \ldots , r_{n - 1} \circ r_ n^{-1})
Compatibility with degeneracy maps is clear from the description of the degeneracies in Lemma 85.29.1. We omit the verification that the maps respect the morphisms s^ n_ j. Groupoids, Lemma 39.13.5 (with the roles of s and t reversed) shows that the two right squares are cartesian. In exactly the same manner one shows all the other squares are cartesian too. Hence the morphism is cartesian.
\square
Comments (2)
Comment #411 by Daniel Litt on
Comment #413 by Johan on