The Stacks project

80.32 Degrees of zero cycles

This section is the analogue of Chow Homology, Section 42.40. We start with defining the degree of a zero cycle on a proper algebraic space over a field.

Definition 80.32.1. Let $k$ be a field. Let $p : X \to \mathop{\mathrm{Spec}}(k)$ be a proper morphism of algebraic spaces. The degree of a zero cycle on $X$ is given by proper pushforward

\[ p_* : \mathop{\mathrm{CH}}\nolimits _0(X) \longrightarrow \mathop{\mathrm{CH}}\nolimits _0(\mathop{\mathrm{Spec}}(k)) \longrightarrow \mathbf{Z} \]

(Lemma 80.16.3) composed with the natural isomorphism $\mathop{\mathrm{CH}}\nolimits _0(\mathop{\mathrm{Spec}}(k)) \to \mathbf{Z}$ which maps $[\mathop{\mathrm{Spec}}(k)]$ to $1$. Notation: $\deg (\alpha )$.

Let us spell this out further.

Lemma 80.32.2. Let $k$ be a field. Let $X$ be a proper algebraic space over $k$. Let $\alpha = \sum n_ i[Z_ i]$ be in $Z_0(X)$. Then

\[ \deg (\alpha ) = \sum n_ i\deg (Z_ i) \]

where $\deg (Z_ i)$ is the degree of $Z_ i \to \mathop{\mathrm{Spec}}(k)$, i.e., $\deg (Z_ i) = \dim _ k \Gamma (Z_ i, \mathcal{O}_{Z_ i})$.

Proof. This is the definition of proper pushforward (Definition 80.8.1). $\square$

Lemma 80.32.3. Let $k$ be a field. Let $X$ be a proper algebraic space over $k$. Let $Z \subset X$ be a closed subspace of dimension $d$. Let $\mathcal{L}_1, \ldots , \mathcal{L}_ d$ be invertible $\mathcal{O}_ X$-modules. Then

\[ (\mathcal{L}_1 \cdots \mathcal{L}_ d \cdot Z) = \deg ( c_1(\mathcal{L}_1) \cap \ldots \cap c_1(\mathcal{L}_1) \cap [Z]_ d) \]

where the left hand side is defined in Spaces over Fields, Definition 70.18.3.

Proof. Let $Z_ i \subset Z$, $i = 1, \ldots , t$ be the irreducible components of dimension $d$. Let $m_ i$ be the multiplicity of $Z_ i$ in $Z$. Then $[Z]_ d = \sum m_ i[Z_ i]$ and $c_1(\mathcal{L}_1) \cap \ldots \cap c_1(\mathcal{L}_ d) \cap [Z]_ d$ is the sum of the cycles $m_ i c_1(\mathcal{L}_1) \cap \ldots \cap c_1(\mathcal{L}_ d) \cap [Z_ i]$. Since we have a similar decomposition for $(\mathcal{L}_1 \cdots \mathcal{L}_ d \cdot Z)$ by Spaces over Fields, Lemma 70.18.2 it suffices to prove the lemma in case $Z = X$ is a proper integral algebraic space over $k$.

By Chow's lemma there exists a proper morphism $f : X' \to X$ which is an isomorphism over a dense open $U \subset X$ such that $X'$ is a scheme. See More on Morphisms of Spaces, Lemma 74.40.5. Then $X'$ is a proper scheme over $k$. After replacing $X'$ by the scheme theoretic closure of $f^{-1}(U)$ we may assume that $X'$ is integral. Then

\[ (f^*\mathcal{L}_1 \cdots f^*\mathcal{L}_ d \cdot X') = (\mathcal{L}_1 \cdots \mathcal{L}_ d \cdot X) \]

by Spaces over Fields, Lemma 70.18.7 and we have

\[ f_*(c_1(f^*\mathcal{L}_1) \cap \ldots \cap c_1(f^*\mathcal{L}_ d) \cap [Y]) = c_1(\mathcal{L}_1) \cap \ldots \cap c_1(\mathcal{L}_ d) \cap [X] \]

by Lemma 80.19.4. Thus we may replace $X$ by $X'$ and assume that $X$ is a proper scheme over $k$. This case was proven in Chow Homology, Lemma 42.40.4. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0ESF. Beware of the difference between the letter 'O' and the digit '0'.