## 84.33 Fppf hypercoverings of algebraic spaces

This section is the analogue of Section 84.25 for the case of algebraic spaces and fppf hypercoverings. The reader who wishes to do so, can replace “algebraic space” everywhere with “scheme” and get equally valid results. This has the advantage of replacing the references to More on Cohomology of Spaces, Section 83.6 with references to Étale Cohomology, Section 59.100.

We fix a base scheme $S$. Let $X$ be an algebraic space over $S$ and let $U$ be a simplicial algebraic space over $S$. Assume we have an augmentation

\[ a : U \to X \]

See Section 84.32. We say that $U$ is an *fppf hypercovering* of $X$ if

$U_0 \to X$ is flat, locally of finite presentation, and surjective,

$U_1 \to U_0 \times _ X U_0$ is flat, locally of finite presentation, and surjective,

$U_{n + 1} \to (\text{cosk}_ n\text{sk}_ n U)_{n + 1}$ is flat, locally of finite presentation, and surjective for $n \geq 1$.

The category of algebraic spaces over $S$ has all finite limits, hence the coskeleta used in the formulation above exist.

\[ \fbox{Principle: Fppf hypercoverings can be used to compute étale cohomology.} \]

The key idea behind the proof of the principle is to compare the fppf and étale topologies on the category $\textit{Spaces}/S$. Namely, the fppf topology is stronger than the étale topology and we have (a) a flat, locally finitely presented, surjective map defines an fppf covering, and (b) fppf cohomology of sheaves pulled back from the small étale site agrees with étale cohomology as we have seen in More on Cohomology of Spaces, Section 83.6.

Lemma 84.33.1. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $U$ be a simplicial algebraic space over $S$. Let $a : U \to X$ be an augmentation. There is a commutative diagram

\[ \xymatrix{ \mathop{\mathit{Sh}}\nolimits ((\textit{Spaces}/U)_{fppf, total}) \ar[r]_-h \ar[d]_{a_{fppf}} & \mathop{\mathit{Sh}}\nolimits (U_{\acute{e}tale}) \ar[d]^ a \\ \mathop{\mathit{Sh}}\nolimits ((\textit{Spaces}/X)_{fppf}) \ar[r]^-{h_{-1}} & \mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale}) } \]

where the left vertical arrow is defined in Section 84.21 and the right vertical arrow is defined in Section 84.32.

**Proof.**
The notation $(\textit{Spaces}/U)_{fppf, total}$ indicates that we are using the construction of Section 84.21 for the site $(\textit{Spaces}/S)_{fppf}$ and the simplicial object $U$ of this site^{1}. We will use the sites $X_{spaces, {\acute{e}tale}}$ and $U_{spaces, {\acute{e}tale}}$ for the topoi on the right hand side; this is permissible see discussion in Section 84.32.

Observe that both $(\textit{Spaces}/U)_{fppf, total}$ and $U_{spaces, {\acute{e}tale}}$ fall into case A of Situation 84.3.3. This is immediate from the construction of $U_{\acute{e}tale}$ in Section 84.32 and it follows from Lemma 84.21.5 for $(\textit{Spaces}/U)_{fppf, total}$. Next, consider the functors $U_{n, spaces, {\acute{e}tale}} \to (\textit{Spaces}/U_ n)_{fppf}$, $U \mapsto U/U_ n$ and $X_{spaces, {\acute{e}tale}} \to (\textit{Spaces}/X)_{fppf}$, $U \mapsto U/X$. We have seen that these define morphisms of sites in More on Cohomology of Spaces, Section 83.6 where these were denoted $a_{U_ n} = \epsilon _{U_ n} \circ \pi _{u_ n}$ and $a_ X = \epsilon _ X \circ \pi _ X$. Thus we obtain a morphism of simplicial sites compatible with augmentations as in Remark 84.5.4 and we may apply Lemma 84.5.5 to conclude.
$\square$

Lemma 84.33.2. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $U$ be a simplicial algebraic space over $S$. Let $a : U \to X$ be an augmentation. If $a : U \to X$ is an fppf hypercovering of $X$, then

\[ a^{-1} : \mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale}) \to \mathop{\mathit{Sh}}\nolimits (U_{\acute{e}tale}) \quad \text{and}\quad a^{-1} : \textit{Ab}(X_{\acute{e}tale}) \to \textit{Ab}(U_{\acute{e}tale}) \]

are fully faithful with essential image the cartesian sheaves and quasi-inverse given by $a_*$. Here $a : \mathop{\mathit{Sh}}\nolimits (U_{\acute{e}tale}) \to \mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale})$ is as in Section 84.32.

**Proof.**
We will prove the statement for sheaves of sets. It will be an almost formal consequence of results already established. Consider the diagram of Lemma 84.33.1. In the proof of this lemma we have seen that $h_{-1}$ is the morphism $a_ X$ of More on Cohomology of Spaces, Section 83.6. Thus it follows from More on Cohomology of Spaces, Lemma 83.6.1 that $(h_{-1})^{-1}$ is fully faithful with quasi-inverse $h_{-1, *}$. The same holds true for the components $h_ n$ of $h$. By the description of the functors $h^{-1}$ and $h_*$ of Lemma 84.5.2 we conclude that $h^{-1}$ is fully faithful with quasi-inverse $h_*$. Observe that $U$ is a hypercovering of $X$ in $(\textit{Spaces}/S)_{fppf}$ as defined in Section 84.21. By Lemma 84.21.1 we see that $a_{fppf}^{-1}$ is fully faithful with quasi-inverse $a_{fppf, *}$ and with essential image the cartesian sheaves on $(\textit{Spaces}/U)_{fppf, total}$. A formal argument (chasing around the diagram) now shows that $a^{-1}$ is fully faithful.

Finally, suppose that $\mathcal{G}$ is a cartesian sheaf on $U_{\acute{e}tale}$. Then $h^{-1}\mathcal{G}$ is a cartesian sheaf on $(\textit{Spaces}/U)_{fppf, total}$. Hence $h^{-1}\mathcal{G} = a_{fppf}^{-1}\mathcal{H}$ for some sheaf $\mathcal{H}$ on $(\textit{Spaces}/X)_{fppf}$. In particular we find that $h_0^{-1}\mathcal{G}_0 = (a_{0, big, fppf})^{-1}\mathcal{H}$. Recalling that $h_0 = a_{U_0}$ and that $U_0 \to X$ is flat, locally of finite presentation, and surjective, we find from More on Cohomology of Spaces, Lemma 83.6.7 that there exists a sheaf $\mathcal{F}$ on $X_{\acute{e}tale}$ and isomorphism $\mathcal{H} = (h_{-1})^{-1}\mathcal{F}$. Since $a_{fppf}^{-1}\mathcal{H} = h^{-1}\mathcal{G}$ we deduce that $h^{-1}\mathcal{G} \cong h^{-1}a^{-1}\mathcal{F}$. By fully faithfulness of $h^{-1}$ we conclude that $a^{-1}\mathcal{F} \cong \mathcal{G}$.

Fix an isomorphism $\theta : a^{-1}\mathcal{F} \to \mathcal{G}$. To finish the proof we have to show $\mathcal{G} = a^{-1}a_*\mathcal{G}$ (in order to show that the quasi-inverse is given by $a_*$; everything else has been proven above). Because $a^{-1}$ is fully faithful we have $\text{id} \cong a_*a^{-1}$ by Categories, Lemma 4.24.4. Thus $\mathcal{F} \cong a_*a^{-1}\mathcal{F}$ and $a_*\theta : a_*a^{-1}\mathcal{F} \to a_*\mathcal{G}$ combine to an isomorphism $\mathcal{F} \to a_*\mathcal{G}$. Pulling back by $a$ and precomposing by $\theta ^{-1}$ we find the desired isomorphism.
$\square$

Lemma 84.33.3. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $U$ be a simplicial algebraic space over $S$. Let $a : U \to X$ be an augmentation. If $a : U \to X$ is an fppf hypercovering of $X$, then for $K \in D^+(X_{\acute{e}tale})$

\[ K \to Ra_*(a^{-1}K) \]

is an isomorphism. Here $a : \mathop{\mathit{Sh}}\nolimits (U_{\acute{e}tale}) \to \mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale})$ is as in Section 84.32.

**Proof.**
Consider the diagram of Lemma 84.33.1. Observe that $Rh_{n, *}h_ n^{-1}$ is the identity functor on $D^+(U_{n, {\acute{e}tale}})$ by More on Cohomology of Spaces, Lemma 83.6.2. Hence $Rh_*h^{-1}$ is the identity functor on $D^+(U_{\acute{e}tale})$ by Lemma 84.5.3. We have

\begin{align*} Ra_*(a^{-1}K) & = Ra_*Rh_*h^{-1}a^{-1}K \\ & = Rh_{-1, *}Ra_{fppf, *}a_{fppf}^{-1}(h_{-1})^{-1}K \\ & = Rh_{-1, *}(h_{-1})^{-1}K \\ & = K \end{align*}

The first equality by the discussion above, the second equality because of the commutativity of the diagram in Lemma 84.25.1, the third equality by Lemma 84.21.2 as $U$ is a hypercovering of $X$ in $(\textit{Spaces}/S)_{fppf}$, and the last equality by the already used More on Cohomology of Spaces, Lemma 83.6.2.
$\square$

Lemma 84.33.4. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $U$ be a simplicial algebraic space over $S$. Let $a : U \to X$ be an augmentation. If $a : U \to X$ is an fppf hypercovering of $X$, then

\[ R\Gamma (X_{\acute{e}tale}, K) = R\Gamma (U_{\acute{e}tale}, a^{-1}K) \]

for $K \in D^+(X_{\acute{e}tale})$. Here $a : \mathop{\mathit{Sh}}\nolimits (U_{\acute{e}tale}) \to \mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale})$ is as in Section 84.32.

**Proof.**
This follows from Lemma 84.33.3 because $R\Gamma (U_{\acute{e}tale}, -) = R\Gamma (X_{\acute{e}tale}, -) \circ Ra_*$ by Cohomology on Sites, Remark 21.14.4.
$\square$

Lemma 84.33.5. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $U$ be a simplicial algebraic space over $S$. Let $a : U \to X$ be an augmentation. Let $\mathcal{A} \subset \textit{Ab}(U_{\acute{e}tale})$ denote the weak Serre subcategory of cartesian abelian sheaves. If $U$ is an fppf hypercovering of $X$, then the functor $a^{-1}$ defines an equivalence

\[ D^+(X_{\acute{e}tale}) \longrightarrow D_\mathcal {A}^+(U_{\acute{e}tale}) \]

with quasi-inverse $Ra_*$. Here $a : \mathop{\mathit{Sh}}\nolimits (U_{\acute{e}tale}) \to \mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale})$ is as in Section 84.32.

**Proof.**
Observe that $\mathcal{A}$ is a weak Serre subcategory by Lemma 84.12.6. The equivalence is a formal consequence of the results obtained so far. Use Lemmas 84.33.2 and 84.33.3 and Cohomology on Sites, Lemma 21.28.5.
$\square$

Lemma 84.33.6. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $U$ be a simplicial algebraic space over $S$. Let $a : U \to X$ be an augmentation. Let $\mathcal{F}$ be an abelian sheaf on $X_{\acute{e}tale}$. Let $\mathcal{F}_ n$ be the pullback to $U_{n, {\acute{e}tale}}$. If $U$ is an fppf hypercovering of $X$, then there exists a canonical spectral sequence

\[ E_1^{p, q} = H^ q_{\acute{e}tale}(U_ p, \mathcal{F}_ p) \]

converging to $H^{p + q}_{\acute{e}tale}(X, \mathcal{F})$.

**Proof.**
Immediate consequence of Lemmas 84.33.4 and 84.8.3.
$\square$

## Comments (0)