Lemma 85.33.5. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $U$ be a simplicial algebraic space over $S$. Let $a : U \to X$ be an augmentation. Let $\mathcal{A} \subset \textit{Ab}(U_{\acute{e}tale})$ denote the weak Serre subcategory of cartesian abelian sheaves. If $U$ is an fppf hypercovering of $X$, then the functor $a^{-1}$ defines an equivalence
with quasi-inverse $Ra_*$. Here $a : \mathop{\mathit{Sh}}\nolimits (U_{\acute{e}tale}) \to \mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale})$ is as in Section 85.32.
Comments (0)