Lemma 82.6.7. In Lemma 82.6.4 assume $f$ is flat, locally of finite presentation, and surjective. Then the functor

sending $\mathcal{F}$ to $(f_{small}^{-1}\mathcal{F}, a_ Y^{-1}\mathcal{F}, can)$ is an equivalence.

Lemma 82.6.7. In Lemma 82.6.4 assume $f$ is flat, locally of finite presentation, and surjective. Then the functor

\[ \mathop{\mathit{Sh}}\nolimits (Y_{\acute{e}tale}) \longrightarrow \left\{ (\mathcal{G}, \mathcal{H}, \alpha ) \middle | \begin{matrix} \mathcal{G} \in \mathop{\mathit{Sh}}\nolimits (X_{\acute{e}tale}),\ \mathcal{H} \in \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/Y)_{fppf}),
\\ \alpha : a_ X^{-1}\mathcal{G} \to f_{big, fppf}^{-1}\mathcal{H} \text{ an isomorphism}
\end{matrix} \right\} \]

sending $\mathcal{F}$ to $(f_{small}^{-1}\mathcal{F}, a_ Y^{-1}\mathcal{F}, can)$ is an equivalence.

**Proof.**
The functor $a_ X^{-1}$ is fully faithful (as $a_{X, *}a_ X^{-1} = \text{id}$ by Lemma 82.6.1). Hence the forgetful functor $(\mathcal{G}, \mathcal{H}, \alpha ) \mapsto \mathcal{H}$ identifies the category of triples with a full subcategory of $\mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/Y)_{fppf})$. Moreover, the functor $a_ Y^{-1}$ is fully faithful, hence the functor in the lemma is fully faithful as well.

Suppose that we have an étale covering $\{ Y_ i \to Y\} $. Let $f_ i : X_ i \to Y_ i$ be the base change of $f$. Denote $f_{ij} = f_ i \times f_ j : X_ i \times _ X X_ j \to Y_ i \times _ Y Y_ j$. Claim: if the lemma is true for $f_ i$ and $f_{ij}$ for all $i, j$, then the lemma is true for $f$. To see this, note that the given étale covering determines an étale covering of the final object in each of the four sites $Y_{\acute{e}tale}, X_{\acute{e}tale}, (\mathit{Sch}/Y)_{fppf}, (\mathit{Sch}/X)_{fppf}$. Thus the category of sheaves is equivalent to the category of glueing data for this covering (Sites, Lemma 7.26.5) in each of the four cases. A huge commutative diagram of categories then finishes the proof of the claim. We omit the details. The claim shows that we may work étale locally on $Y$. In particular, we may assume $Y$ is a scheme.

Assume $Y$ is a scheme. Choose a scheme $X'$ and a surjective étale morphism $s : X' \to X$. Set $f' = f \circ s : X' \to Y$ and observe that $f'$ is surjective, locally of finite presentation, and flat. Claim: if the lemma is true for $f'$, then it is true for $f$. Namely, given a triple $(\mathcal{G}, \mathcal{H}, \alpha )$ for $f$, we can pullback by $s$ to get a triple $(s_{small}^{-1}\mathcal{G}, \mathcal{H}, s_{big, fppf}^{-1}\alpha )$ for $f'$. A solution for this triple gives a sheaf $\mathcal{F}$ on $Y_{\acute{e}tale}$ with $a_ Y^{-1}\mathcal{F} = \mathcal{H}$. By the first paragraph of the proof this means the triple is in the essential image. This reduces us to the case where both $X$ and $Y$ are schemes. This case follows from Étale Cohomology, Lemma 58.94.4 via the discussion in Section 82.3 and in particular Lemma 82.3.1. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)