Lemma 85.5.5. Let $\mathcal{C}_ n, f_\varphi , u_\varphi , \mathcal{D}, a_0$, $\mathcal{C}'_ n, f'_\varphi , u'_\varphi , \mathcal{D}', a'_0$, and $h_ n$, $n \geq -1$ be as in Remark 85.5.4. Then we obtain a commutative diagram
Proof. The morphism $h$ is defined in Lemma 85.5.2. The morphisms $a$ and $a'$ are defined in Lemma 85.4.2. Thus the only thing is to prove the commutativity of the diagram. To do this, we prove that $a^{-1} \circ h_{-1}^{-1} = h_{total}^{-1} \circ (a')^{-1}$. By the commutative diagrams of Lemma 85.5.2 and the description of $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_{total})$ and $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'_{total})$ in terms of components in Lemma 85.3.4, it suffices to show that
commutes for all $n$. This follows from the case for $n = 0$ (which is an assumption in Remark 85.5.4) and for $n > 0$ we pick $\varphi : [0] \to [n]$ and then the required commutativity follows from the case $n = 0$ and the relations $a_ n = a_0 \circ f_\varphi $ and $a'_ n = a'_0 \circ f'_\varphi $ as well as the commutation relations $f'_\varphi \circ h_ n = h_0 \circ f_\varphi $. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)