The Stacks project

Lemma 89.4.3. Let $S$ be a scheme. Let $X$ be a Noetherian algebraic space over $S$. Let $T \subset |X|$ be a finite set of closed points $x$ such that (1) $X$ is regular at $x$ and (2) the local ring of $X$ at $x$ has dimension $2$. Let $\mathcal{I} \subset \mathcal{O}_ X$ be a quasi-coherent sheaf of ideals such that $\mathcal{O}_ X/\mathcal{I}$ is supported on $T$. Then there exists a sequence

\[ X_ m \to X_{m - 1} \to \ldots \to X_1 \to X_0 = X \]

where $X_{j + 1} \to X_ j$ is the blowing up of $X_ j$ at a closed point $x_ j$ lying above a point of $T$ such that $\mathcal{I}\mathcal{O}_{X_ n}$ is an invertible ideal sheaf.

Proof. Say $T = \{ x_1, \ldots , x_ r\} $. Pick elementary étale neighbourhoods $(U_ i, u_ i) \to (X, x_ i)$ as in Section 89.3. For each $i$ the restriction $\mathcal{I}_ i = \mathcal{I}|_{U_ i} \subset \mathcal{O}_{U_ i}$ is a quasi-coherent sheaf of ideals supported at $u_ i$. The local ring of $U_ i$ at $u_ i$ is regular and has dimension $2$. Thus we may apply Resolution of Surfaces, Lemma 54.4.1 to find a sequence

\[ X_{i, m_ i} \to X_{i, m_ i - 1} \to \ldots \to X_1 \to X_{i, 0} = U_ i \]

of blowing ups in closed points lying over $u_ i$ such that $\mathcal{I}_ i \mathcal{O}_{X_{i, m_ i}}$ is invertible. By Lemma 89.4.2 we find a sequence of blowing ups

\[ X_ m \to X_{m - 1} \to \ldots \to X_1 \to X_0 = X \]

as in the statement of the lemma whose base change to our $U_ i$ produces the given sequences. It follows that $\mathcal{I}\mathcal{O}_{X_ n}$ is an invertible ideal sheaf. Namely, we know this is true over $X \setminus \{ x_1, \ldots , x_ n\} $ and in an étale neighbourhood of the fibre of each $x_ i$ it is true by construction. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BHG. Beware of the difference between the letter 'O' and the digit '0'.