Processing math: 100%

The Stacks project

Lemma 47.9.2. Let A \to B be a ring homomorphism and let I \subset A be a finitely generated ideal. Set J = IB. Set Z = V(I) and Y = V(J). Then

R\Gamma _ Z(M_ A) = R\Gamma _ Y(M)_ A

functorially in M \in D(B). Here (-)_ A denotes the restriction functors D(B) \to D(A) and D_{J^\infty \text{-torsion}}(B) \to D_{I^\infty \text{-torsion}}(A).

Proof. This follows from uniqueness of adjoint functors as both R\Gamma _ Z((-)_ A) and R\Gamma _ Y(-)_ A are right adjoint to the functor D_{I^\infty \text{-torsion}}(A) \to D(B), K \mapsto K \otimes _ A^\mathbf {L} B. Alternatively, one can use the description of R\Gamma _ Z and R\Gamma _ Y in terms of alternating Čech complexes (Lemma 47.9.1). Namely, if I = (f_1, \ldots , f_ r) then J is generated by the images g_1, \ldots , g_ r \in B of f_1, \ldots , f_ r. Then the statement of the lemma follows from the existence of a canonical isomorphism

\begin{align*} & M_ A \otimes _ A (A \to \prod \nolimits _{i_0} A_{f_{i_0}} \to \prod \nolimits _{i_0 < i_1} A_{f_{i_0}f_{i_1}} \to \ldots \to A_{f_1\ldots f_ r}) \\ & = M \otimes _ B (B \to \prod \nolimits _{i_0} B_{g_{i_0}} \to \prod \nolimits _{i_0 < i_1} B_{g_{i_0}g_{i_1}} \to \ldots \to B_{g_1\ldots g_ r}) \end{align*}

for any B-module M. \square


Comments (0)

There are also:

  • 2 comment(s) on Section 47.9: Local cohomology

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.