Lemma 47.9.2. Let A \to B be a ring homomorphism and let I \subset A be a finitely generated ideal. Set J = IB. Set Z = V(I) and Y = V(J). Then
R\Gamma _ Z(M_ A) = R\Gamma _ Y(M)_ A
functorially in M \in D(B). Here (-)_ A denotes the restriction functors D(B) \to D(A) and D_{J^\infty \text{-torsion}}(B) \to D_{I^\infty \text{-torsion}}(A).
Proof.
This follows from uniqueness of adjoint functors as both R\Gamma _ Z((-)_ A) and R\Gamma _ Y(-)_ A are right adjoint to the functor D_{I^\infty \text{-torsion}}(A) \to D(B), K \mapsto K \otimes _ A^\mathbf {L} B. Alternatively, one can use the description of R\Gamma _ Z and R\Gamma _ Y in terms of alternating Čech complexes (Lemma 47.9.1). Namely, if I = (f_1, \ldots , f_ r) then J is generated by the images g_1, \ldots , g_ r \in B of f_1, \ldots , f_ r. Then the statement of the lemma follows from the existence of a canonical isomorphism
\begin{align*} & M_ A \otimes _ A (A \to \prod \nolimits _{i_0} A_{f_{i_0}} \to \prod \nolimits _{i_0 < i_1} A_{f_{i_0}f_{i_1}} \to \ldots \to A_{f_1\ldots f_ r}) \\ & = M \otimes _ B (B \to \prod \nolimits _{i_0} B_{g_{i_0}} \to \prod \nolimits _{i_0 < i_1} B_{g_{i_0}g_{i_1}} \to \ldots \to B_{g_1\ldots g_ r}) \end{align*}
for any B-module M.
\square
Comments (0)
There are also: