Lemma 20.30.3. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $K$ be an object of $D(\mathcal{O}_ X)$. The sheafification of

is the $q$th cohomology sheaf $H^ q(K)$ of $K$.

Lemma 20.30.3. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $K$ be an object of $D(\mathcal{O}_ X)$. The sheafification of

\[ U \mapsto H^ q(U, K) = H^ q(U, K|_ U) \]

is the $q$th cohomology sheaf $H^ q(K)$ of $K$.

**Proof.**
The equality $H^ q(U, K) = H^ q(U, K|_ U)$ holds by Lemma 20.30.2. Choose a K-injective complex $\mathcal{I}^\bullet $ representing $K$. Then

\[ H^ q(U, K) = \frac{\mathop{\mathrm{Ker}}(\mathcal{I}^ q(U) \to \mathcal{I}^{q + 1}(U))}{\mathop{\mathrm{Im}}(\mathcal{I}^{q - 1}(U) \to \mathcal{I}^ q(U))}. \]

by our construction of cohomology. Since $H^ q(K) = \mathop{\mathrm{Ker}}(\mathcal{I}^ q \to \mathcal{I}^{q + 1})/ \mathop{\mathrm{Im}}(\mathcal{I}^{q - 1} \to \mathcal{I}^ q)$ the result is clear. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)