Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 20.29.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}^\bullet $ be a filtered complex of $\mathcal{O}_ X$-modules. There exists a canonical spectral sequence $(E_ r, \text{d}_ r)_{r \geq 1}$ of bigraded $\Gamma (X, \mathcal{O}_ X)$-modules with $d_ r$ of bidegree $(r, -r + 1)$ and

\[ E_1^{p, q} = H^{p + q}(X, \text{gr}^ p\mathcal{F}^\bullet ) \]

If for every $n$ we have

\[ H^ n(X, F^ p\mathcal{F}^\bullet ) = 0\text{ for }p \gg 0 \quad \text{and}\quad H^ n(X, F^ p\mathcal{F}^\bullet ) = H^ n(X, \mathcal{F}^\bullet )\text{ for }p \ll 0 \]

then the spectral sequence is bounded and converges to $H^*(X, \mathcal{F}^\bullet )$.

Proof. (For a proof in case the complex is a bounded below complex of modules with finite filtrations, see the remark below.) Choose an map of filtered complexes $j : \mathcal{F}^\bullet \to \mathcal{J}^\bullet $ as in Injectives, Lemma 19.13.7. The spectral sequence is the spectral sequence of Homology, Section 12.24 associated to the filtered complex

\[ \Gamma (X, \mathcal{J}^\bullet ) \quad \text{with}\quad F^ p\Gamma (X, \mathcal{J}^\bullet ) = \Gamma (X, F^ p\mathcal{J}^\bullet ) \]

Since cohomology is computed by evaluating on K-injective representatives we see that the $E_1$ page is as stated in the lemma. The convergence and boundedness under the stated conditions follows from Homology, Lemma 12.24.13. $\square$


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.