Lemma 10.46.10. Let $\varphi : R \to S$ be a ring map. Assume

$\varphi $ is integral,

$\varphi $ induces an bijective map of spectra,

$\varphi $ induces purely inseparable residue field extensions.

Then $\varphi $ induces a homeomorphism on spectra and for any ring map $R \to R'$ properties (1), (2), (3) are true for $R' \to R' \otimes _ R S$.

## Comments (0)